Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nat Biotechnol ; 34(5): 539-46, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27088724

RESUMO

Systematic efforts to sequence the cancer genome have identified large numbers of mutations and copy number alterations in human cancers. However, elucidating the functional consequences of these variants, and their interactions to drive or maintain oncogenic states, remains a challenge in cancer research. We developed REVEALER, a computational method that identifies combinations of mutually exclusive genomic alterations correlated with functional phenotypes, such as the activation or gene dependency of oncogenic pathways or sensitivity to a drug treatment. We used REVEALER to uncover complementary genomic alterations associated with the transcriptional activation of ß-catenin and NRF2, MEK-inhibitor sensitivity, and KRAS dependency. REVEALER successfully identified both known and new associations, demonstrating the power of combining functional profiles with extensive characterization of genomic alterations in cancer genomes.


Assuntos
Biomarcadores Tumorais/genética , Mapeamento Cromossômico/métodos , Estudo de Associação Genômica Ampla/métodos , Proteínas de Neoplasias/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genes Neoplásicos/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Humanos , Mutação/genética , Neoplasias/diagnóstico , Transdução de Sinais/genética
2.
Sci Signal ; 5(224): rs4, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22589389

RESUMO

Cell microarrays are a promising tool for performing large-scale functional genomic screening in mammalian cells at reasonable cost, but owing to technical limitations they have been restricted for use with a narrow range of cell lines and short-term assays. Here, we describe MicroSCALE (Microarrays of Spatially Confined Adhesive Lentiviral Features), a cell microarray-based platform that enables application of this technology to a wide range of cell types and longer-term assays. We used MicroSCALE to uncover kinases that when overexpressed partially desensitized B-RAFV600E-mutant melanoma cells to inhibitors of the mitogen-activated protein kinase kinase kinase (MAPKKK) RAF, the MAPKKs MEK1 and 2 (MEK1/2, mitogen-activated protein kinase kinase 1 and 2), mTOR (mammalian target of rapamycin), or PI3K (phosphatidylinositol 3-kinase). These screens indicated that cells treated with inhibitors acting through common mechanisms were affected by a similar profile of overexpressed proteins. In contrast, screens involving inhibitors acting through distinct mechanisms yielded unique profiles, a finding that has potential relevance for small-molecule target identification and combination drugging studies. Further, by integrating large-scale functional screening results with cancer cell line gene expression and pharmacological sensitivity data, we validated the nuclear factor κB pathway as a potential mediator of resistance to MAPK pathway inhibitors. The MicroSCALE platform described here may enable new classes of large-scale, resource-efficient screens that were not previously feasible, including those involving combinations of cell lines, perturbations, and assay outputs or those involving limited numbers of cells and limited or expensive reagents.


Assuntos
Melanoma/tratamento farmacológico , Apoptose , Western Blotting , Ciclo Celular , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melanoma/genética , Mutação , Farmacogenética , Proteínas Proto-Oncogênicas B-raf/genética
3.
J Hematol Oncol ; 5: 20, 2012 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-22559819

RESUMO

BACKGROUND: Approximately 70% of all patients with myelodysplastic syndrome (MDS) present with lower-risk disease. Some of these patients will initially respond to treatment with growth factors to improve anemia but will eventually cease to respond, while others will be resistant to growth factor therapy. Eventually, all lower-risk MDS patients require multiple transfusions and long-term therapy. While some patients may respond briefly to hypomethylating agents or lenalidomide, the majority will not, and new therapeutic options are needed for these lower-risk patients. Our previous clinical trials with ezatiostat (ezatiostat hydrochloride, Telentra®, TLK199), a glutathione S-transferase P1-1 inhibitor in clinical development for the treatment of low- to intermediate-risk MDS, have shown significant clinical activity, including multilineage responses as well as durable red-blood-cell transfusion independence. It would be of significant clinical benefit to be able to identify patients most likely to respond to ezatiostat before therapy is initiated. We have previously shown that by using gene expression profiling and grouping by response, it is possible to construct a predictive score that indicates the likelihood that patients without deletion 5q will respond to lenalidomide. The success of that study was based in part on the fact that the profile for response was linked to the biology of the disease. METHODS: RNA was available on 30 patients enrolled in the trial and analyzed for gene expression on the Illumina HT12v4 whole genome array according to the manufacturer's protocol. Gene marker analysis was performed. The selection of genes associated with the responders (R) vs. non-responders (NR) phenotype was obtained using a normalized and rescaled mutual information score (NMI). CONCLUSIONS: We have shown that an ezatiostat response profile contains two miRNAs that regulate expression of genes known to be implicated in MDS disease pathology. Remarkably, pathway analysis of the response profile revealed that the genes comprising the jun-N-terminal kinase/c-Jun molecular pathway, which is known to be activated by ezatiostat, are under-expressed in patients who respond and over-expressed in patients who were non-responders to the drug, suggesting that both the biology of the disease and the molecular mechanism of action of the drug are positively correlated.


Assuntos
Biomarcadores Tumorais/genética , Células da Medula Óssea/metabolismo , Glutationa/análogos & derivados , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Transdução de Sinais/efeitos dos fármacos , Perfilação da Expressão Gênica , Glutationa/uso terapêutico , Glutationa S-Transferase pi/antagonistas & inibidores , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Valor Preditivo dos Testes , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA