Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(11): e111605, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25364822

RESUMO

Bluetongue virus (BTV) is an economically important Orbivirus transmitted by biting midges to domestic and wild ruminants. The need for new vaccines has been highlighted by the occurrence of repeated outbreaks caused by different BTV serotypes since 1998. The major group-reactive antigen of BTV, VP7, is conserved in the 26 serotypes described so far, and its role in the induction of protective immunity has been proposed. Viral-based vectors as antigen delivery systems display considerable promise as veterinary vaccine candidates. In this paper we have evaluated the capacity of the BTV-2 serotype VP7 core protein expressed by either a non-replicative canine adenovirus type 2 (Cav-VP7 R0) or a leporipoxvirus (SG33-VP7), to induce immune responses in sheep. Humoral responses were elicited against VP7 in almost all animals that received the recombinant vectors. Both Cav-VP7 R0 and SG33-VP7 stimulated an antigen-specific CD4+ response and Cav-VP7 R0 stimulated substantial proliferation of antigen-specific CD8+ lymphocytes. Encouraged by the results obtained with the Cav-VP7 R0 vaccine vector, immunized animals were challenged with either the homologous BTV-2 or the heterologous BTV-8 serotype and viral burden in plasma was followed by real-time RT-PCR. The immune responses triggered by Cav-VP7 R0 were insufficient to afford protective immunity against BTV infection, despite partial protection obtained against homologous challenge. This work underscores the need to further characterize the role of BTV proteins in cross-protective immunity.


Assuntos
Antígenos Virais/genética , Vírus Bluetongue/genética , Bluetongue/imunologia , Expressão Gênica , Vetores Genéticos/genética , Proteínas do Core Viral/genética , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Bluetongue/prevenção & controle , Bluetongue/virologia , Vírus Bluetongue/imunologia , Linhagem Celular , Cricetinae , Reações Cruzadas/imunologia , Cães , Feminino , Imunidade Celular , Imunização , Masculino , Coelhos , Ovinos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas do Core Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
2.
PLoS One ; 7(12): e52513, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300693

RESUMO

Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+) -type and CD103(+) -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+) -type DCs was far higher and broader than in the CD103(+) -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+) -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+) DC type is more responsive to CAV2 than the CD103(+) DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness.


Assuntos
Adenovirus Caninos/genética , Movimento Celular/imunologia , DNA Recombinante/genética , Células Dendríticas/imunologia , Vetores Genéticos/genética , Pele/imunologia , Transcriptoma/imunologia , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Cães , Feminino , Humanos , Cadeias alfa de Integrinas/metabolismo , Ovinos , Vacinação
3.
Vaccine ; 29(6): 1304-10, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21134446

RESUMO

Safe and efficient vaccination is important for rabies prevention in domestic animals. Replicative vectors expressing the rabies virus glycoprotein, derived from canine adenovirus have been reported to be promising vaccines in various animal models. In this paper we compare the potential of a replicative and a non-replicative vector, both based on canine adenovirus type 2 and expressing the rabies glycoprotein. Upon inoculation in sheep, immune responses against the rabies virus protein elicited by recombinant vectors were monitored. All immunised sheep produced a rapid and potent neutralizing antibody response against rabies virus after a single inoculation of either replicative or non-replicative recombinant canine adenovirus type 2. In addition, the non-replicative vector expressing the rabies glycoprotein stimulated antigen-specific CD4(+) and CD8(+) lymphocyte proliferation as well as IFN-γ production. These results suggest that vectors derived from canine adenovirus 2 could be considered for the development of promising vaccines in the ruminant species.


Assuntos
Adenovirus Caninos/genética , Portadores de Fármacos , Vetores Genéticos , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/prevenção & controle , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Interferon gama/metabolismo , Masculino , Vacina Antirrábica/genética , Vírus da Raiva/genética , Ovinos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/genética , Vacinas de Produtos Inativados/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA