Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 250: 106905, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598406

RESUMO

Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.

2.
Environ Sci Technol ; 47(11): 5626-34, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23675849

RESUMO

Subsurface transport of plutonium (Pu) may be facilitated by the formation of intrinsic Pu colloids. While this colloid-facilitated transport is largely governed by the electrokinetic properties and dispersion stability (resistance to aggregation) of the colloids, reported experimental data is scarce. Here, we quantify the dependence of ζ-potential of intrinsic Pu(IV) colloids on pH and their aggregation rate on ionic strength. Results indicate an isoelectric point of pH 8.6 and a critical coagulation concentration of 0.1 M of 1:1 electrolyte at pH 11.4. The ζ-potential/pH dependence of the Pu(IV) colloids is similar to that of goethite and hematite colloids. Colloid interaction energy calculations using these values reveal an effective Hamaker constant of the intrinsic Pu(IV) colloids in water of 1.85 × 10(-19) J, corresponding to a relative permittivity of 6.21 and refractive index of 2.33, in agreement with first principles calculations. This relatively high Hamaker constant combined with the positive charge of Pu(IV) colloids under typical groundwater aquifer conditions led to two contradicting hypotheses: (a) the Pu(IV) colloids will exhibit significant aggregation and deposition, leading to a negligible subsurface transport or (b) the Pu(IV) colloids will associate with the relatively stable native groundwater colloids, leading to a considerable subsurface transport. Packed column transport experiments supported the second hypothesis.


Assuntos
Coloides/química , Água Subterrânea/química , Plutônio/química , Concentração de Íons de Hidrogênio , Ponto Isoelétrico , Cinética , Concentração Osmolar , Suspensões/química , Poluentes Químicos da Água/química
3.
Appl Environ Microbiol ; 75(11): 3641-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19363069

RESUMO

We examined the ability of the metal-reducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1 to reduce Pu(VI) and Pu(V). Cell suspensions of both bacteria reduced oxidized Pu [a mixture of Pu(VI) and Pu(V)] to Pu(IV). The rate of plutonium reduction was similar to the rate of U(VI) reduction obtained under similar conditions for each bacteria. The rates of Pu(VI) and U(VI) reduction by cell suspensions of S. oneidensis were slightly higher than the rates observed with G. metallireducens. The reduced form of Pu was characterized as aggregates of nanoparticulates of Pu(IV). Transmission electron microscopy images of the solids obtained from the cultures after the reduction of Pu(VI) and Pu(V) by S. oneidensis show that the Pu precipitates have a crystalline structure. The nanoparticulates of Pu(IV) were precipitated on the surface of or within the cell walls of the bacteria. The production of Pu(III) was not observed, which indicates that Pu(IV) was the stable form of reduced Pu under these experimental conditions. Experiments examining the ability of these bacteria to use Pu(VI) as a terminal electron acceptor for growth were inconclusive. A slight increase in cell density was observed for both G. metallireducens and S. oneidensis when Pu(VI) was provided as the sole electron acceptor; however, Pu(VI) concentrations decreased similarly in both the experimental and control cultures.


Assuntos
Geobacter/metabolismo , Plutônio/metabolismo , Shewanella/metabolismo , Parede Celular/ultraestrutura , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão , Oxirredução , Urânio/metabolismo
4.
Appl Environ Microbiol ; 73(18): 5897-903, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17644643

RESUMO

The bacterial reduction of actinides has been suggested as a possible remedial strategy for actinide-contaminated environments, and the bacterial reduction of Pu(VI/V) has the potential to produce highly insoluble Pu(IV) solid phases. However, the behavior of plutonium with regard to bacterial reduction is more complex than for other actinides because it is possible for Pu(IV) to be further reduced to Pu(III), which is relatively more soluble than Pu(IV). This work investigates the ability of the metal-reducing bacteria Geobacter metallireducens GS15 and Shewanella oneidensis MR1 to enzymatically reduce freshly precipitated amorphous Pu(IV) (OH)(4) [Pu(IV)(OH)(4(am))] and soluble Pu(IV)(EDTA). In cell suspensions without added complexing ligands, minor Pu(III) production was observed in cultures containing S. oneidensis, but little or no Pu(III) production was observed in cultures containing G. metallireducens. In the presence of EDTA, most of the Pu(IV)(OH)(4(am)) present was reduced to Pu(III) and remained soluble in cell suspensions of both S. oneidensis and G. metallireducens. When soluble Pu(IV)(EDTA) was provided as the terminal electron acceptor, cell suspensions of both S. oneidensis and G. metallireducens rapidly reduced Pu(IV)(EDTA) to Pu(III)(EDTA) with nearly complete reduction within 20 to 40 min, depending on the initial concentration. Neither bacterium was able to use Pu(IV) (in any of the forms used) as a terminal electron acceptor to support growth. These results have significant implications for the potential remediation of plutonium and suggest that strongly reducing environments where complexing ligands are present may produce soluble forms of reduced Pu species.


Assuntos
Geobacter/metabolismo , Plutônio/metabolismo , Shewanella/metabolismo , Biodegradação Ambiental , Geobacter/crescimento & desenvolvimento , Metais , Oxirredução , Plutônio/química , Shewanella/crescimento & desenvolvimento
5.
Biometals ; 20(6): 853-67, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17273817

RESUMO

The siderophore produced by Rhodococcus rhodochrous strain OFS, rhodobactin, was isolated from iron-deficient cultures and purified by a combination of XAD-7 absorptive/partition resin column and semi-preparative HPLC. The siderophore structure was characterized using 1D and 2D (1)H, (13)C and (15)N NMR techniques (DQFCOSY, TOCSY, NOESY, HSQC and LR-HSQC) and was confirmed using ESI-MS and MS/MS experiments. The structural characterization revealed that the siderophore, rhodobactin, is a mixed ligand hexadentate siderophore with two catecholate and one hydroxamate moieties for iron chelation. We further investigated the effects of Fe concentrations on siderophore production and found that Fe limiting conditions (Fe concentrations from 0.1 microM to 2.0 microM) facilitated siderophore excretion. Our interests lie in the role that siderophores may have in binding metals at mixed contamination sites (containing metals/radionuclides and organics). Given the broad metabolic capacity of this microbe and its Fe scavenging ability, R. rhodochrous OFS may have a competitive advantage over other organisms employed in bioremediation.


Assuntos
Rhodococcus/metabolismo , Sideróforos/química , Ágar/química , Cromatografia Líquida de Alta Pressão/métodos , Epinefrina/análogos & derivados , Epinefrina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Ferro/química , Ferro/metabolismo , Ligantes , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metais/química , Modelos Químicos , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria/métodos , Espectrofotometria Ultravioleta/métodos , Fatores de Tempo
6.
Inorg Chem ; 45(14): 5607-16, 2006 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-16813425

RESUMO

The iron complexation of a fluorescent green pyoverdin siderophore produced by the environmental bacterium Pseudomonas putida was characterized by solution thermodynamic methods. Pyoverdin binds iron through three bidentate chelate groups, a catecholate, a hydroxamate, and an alpha-hydroxycarboxylic acid. The deprotonation constants of the free pyoverdin and Fe(III)-pyoverdin complex were determined through a series of potentiometric and spectrophotometric experiments. The ferric complex of pyoverdin forms at very low pH (pH < 2), but full iron coordination does not occur until neutral pH. The calculated pM value of 25.13 is slightly lower than that for pyoverdin PaA (pM = 27), which coordinates iron by a catecholate and two hydroxamate groups. The redox potential of Fe-pyoverdin was found to be very pH sensitive. At high pH (approximately pH 9-11) where pyoverdin coordinates Fe in a hexadentate mode the redox potential is -0.480 V (NHE); however, at neutral pH where full Fe coordination is incomplete, the redox potential is more positive (E(1/2) = -0.395 V). The positive shift in the redox potential and the partial dissociation of the Fe-pyoverdin complex with pH decrease provides a path toward in vivo iron release.


Assuntos
Compostos Férricos/química , Oligopeptídeos/química , Compostos Organometálicos/química , Pseudomonas putida/química , Sideróforos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Oligopeptídeos/biossíntese , Oligopeptídeos/isolamento & purificação , Potenciometria , Pseudomonas putida/metabolismo , Sideróforos/biossíntese , Sideróforos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
7.
Inorg Chem ; 43(19): 5816-23, 2004 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-15360230

RESUMO

EDTA forms stable complexes with plutonium that are integral to nuclear material processing, radionuclide decontamination, and the potentially enhanced transport of environmental contamination. To characterize the aqueous Pu(4+/3+)EDTA species formed under the wide range of conditions of these processes, potentiometry, spectrophotometry, and cyclic voltammetry were used to measure solution equilibria. The results reveal new EDTA and mixed-ligand complexes and provide more accurate stability constants for previously identified species. In acidic solution (pH < 4) and at 1:1 ligand to metal ratio, PuY (where Y4- is the tetra-anion of EDTA) is the predominant species, with an overall formation constant of log beta110 = 26.44. At higher pH, the hydrolysis species, PuY(OH)- and PuY(OH)(2)2-, form with the corresponding overall stability constants log beta(11 - 1) = 21.95 and log beta(11 - 2) = 15.29. The redox potential of the complex PuY at pH = 2.3 was determined to be E(1/2) = 342 mV. The correlation between redox potential, pH, and the protonation state of PuY- was derived to estimate the redox potential of the Pu(4+/3+)Y complex as a function of pH. Under conditions of neutral pH and excess EDTA relative to Pu4+, PuY(2)4- forms with an overall formation constant of log beta120 = 35.39. In the presence of ancillary ligands, mixed-ligand complexes form, as exemplified by the citrate and carbonate complexes PuY(citrate)3- (log beta1101 = 33.45) and PuY(carbonate)2- (log beta1101 = 35.51). Cyclic voltammetry shows irreversible electrochemical behavior for these coordinatively saturated Pu4+ complexes: The reduction wave is shifted approximately -400 mV from the reduction wave of the complex PuY, while the oxidation wave is invariant.

8.
Biometals ; 17(2): 105-9, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15088935

RESUMO

Highly toxic beryllium(II) is divalent metal ion with a high charge density, making it a potential target for binding to bio-molecules rich in O donor groups. In aqueous solution Be2+ binds to ATP and ADP to form 1:1 Be2+:ATP and Be2+:ADP complexes in relatively acidic media. At neutral pH the complex formed undergoes hydrolysis. Be2+ binding to ATP and ADP is much stronger than Ca2+ and Mg2+ binding. The high affinity of Be2+ toward ATP and ADP binding suggests a mechanism relevant to understanding the in vivo chemical toxicity of this metal.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Berílio/metabolismo , Berílio/toxicidade , Cinética , Hidróxido de Sódio , Termodinâmica
9.
J Biol Inorg Chem ; 8(8): 881-92, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14551810

RESUMO

Ferric binding protein, Fbp, serves an essential biological function in shuttling naked (hydrated) Fe(3+) across the periplasmic space of many Gram-negative bacteria. In this process, iron must be released at the cytoplasmic membrane to a permease. How iron is released from Fbp has yet to be resolved. Consequently, understanding the dynamics of iron release from Fbp is of both biological and chemical interest. Fbp requires an exogenous anion, e.g. phosphate when isolated from cell lysates, for tight iron sequestration. To address the role of exogenous anion identity and lability on Fe(aq)(3+) dissociation from Fbp, the kinetics of PO(4)(3-) exchange in Fe(3+) nFbp(PO(4)) ( nFbp=recombinant Fbp from Neisseria meningitidis) were investigated by dynamic (31)P NMR and the kinetics of Fe(3+) dissociation from Fe(3+) nFbp(X) (X=PO(4)(3-), citrate anion) were investigated by stopped-flow pH-jump measurements. We justify the use of non-physiological low-pH conditions because a high [H(+)] will drive the Fe(aq)(3+) dissociation reaction to completion without using competing chelators, whose presence may complicate or influence the dissociation mechanism. For perspective, these studies of nFbp (which has been referred to as a bacterial transferrin) are compared to new and previously published kinetic and thermodynamic data for mammalian transferrin. Significantly, we address the lability of the Fe(3+) coordination shell in nFbp, Fe(3+) nFbp(X) (X=PO(4)(3-), citrate), with respect to exogenous anion (X(n-)) exchange and dissociation, and ultimately complete dissociation of the protein to yield naked (hydrated) Fe(aq)(3+). These findings are a first step in understanding the process of iron donation to the bacterial permease for transport across the cytoplasmic membrane.


Assuntos
Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Ferro/farmacocinética , Transferrina/metabolismo , Ânions , Cinética , Neisseria meningitidis
10.
Biometals ; 15(4): 325-39, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12405526

RESUMO

In this mini-review we describe selected aspects of the coordination chemistry relevant to siderophore mediated iron transport and bioavailability. Specific emphasis is placed on a discussion of in vitro kinetic and thermodynamic data that are relevant to elucidating possible in vivo mechanisms for environmental iron acquisition by microbial cells.


Assuntos
Ferro/metabolismo , Sideróforos/metabolismo , Animais , Desferroxamina/metabolismo , Compostos Férricos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Oxirredução , Peptídeos Cíclicos/metabolismo , Sideróforos/química , Solubilidade
11.
Inorg Chem ; 41(6): 1464-73, 2002 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-11896715

RESUMO

pK(a) values for the hydroxamic acid, alpha-NH(3)(+), and epsilon-NH(3)(+) groups of L-lysinehydroxamic acid (LyHA, H(3)L(2+)) were found to be 6.87, 8.89, and 10.76, respectively, in aqueous solution (I = 0.1 M, NaClO(4)) at 25 degrees C. O,O coordination to Fe(III) by LyHA is supported by H(+) stoichiometry, UV-vis spectral shifts, and a shift in nu(CO) from 1648 to 1592 cm(-1) upon formation of mono(L-lysinehydroxamato)tetra(aquo)iron(III) (Fe(H(2)L)(H(2)O)(4)(4+)). The stepwise formation of tris(L-lysinehydroxamato)iron(III) from Fe(H(2)O)(6)(3+) and H(3)L(2+) was characterized by spectrophotometric titration, and the values for log beta(1), log beta(2), and log beta(3) are 6.80(9), 12.4(2), and 16.1(2), respectively, at 25 degrees C and I = 2.0 M (NaClO(4)). Stopped-flow spectrophotometry was used to study the proton-driven stepwise ligand dissociation kinetics of tris(L-lysinehydroxamato)iron(III) at 25 degrees C and I = 2.0 M (HClO(4)/NaClO(4)). Defining k(n) and k(-n) as the stepwise ligand dissociation and association rate constants and n as the number of bound LyHA ligands, k(3), k(-3), k(2), k(-2), k(1), and k(-1) are 3.0 x 10(4), 2.4 x 10(1), 3.9 x 10(2), 1.9 x 10(1), 1.4 x 10(-1), and 1.2 x 10(-1) M(-1) s(-1), respectively. These rate and equilibrium constants are compared with corresponding constants for Fe(III) complexes of acetohydroxamic acid (AHA) and N-methylacetohydroxamic acid (NMAHA) in the form of a linear free energy relationship. The role of electrostatics in these complexation reactions to form the highly charged Fe(LyHA)(3)(6+) species is discussed, and an interchange mechanism mediated by charge repulsion is presented. The reduction potential for tris(L-lysinehydroxamato)iron(III) is -214 mV (vs. NHE), and a comparison to other hydroxamic acid complexes of Fe(III) is made through a correlation between E(1/2) and pFe.


Assuntos
Compostos Férricos/química , Ácidos Hidroxâmicos/química , Lisina/análogos & derivados , Lisina/química , Aminas/química , Sítios de Ligação , Cinética , Ligantes , Modelos Químicos , Estrutura Molecular , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA