Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 21(5): e3002110, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37155705

RESUMO

Toxoplasma gondii is a widespread apicomplexan parasite that can cause severe disease in its human hosts. The ability of T. gondii and other apicomplexan parasites to invade into, egress from, and move between cells of the hosts they infect is critical to parasite virulence and disease progression. An unusual and highly conserved parasite myosin motor (TgMyoA) plays a central role in T. gondii motility. The goal of this work was to determine whether the parasite's motility and lytic cycle can be disrupted through pharmacological inhibition of TgMyoA, as an approach to altering disease progression in vivo. To this end, we first sought to identify inhibitors of TgMyoA by screening a collection of 50,000 structurally diverse small molecules for inhibitors of the recombinant motor's actin-activated ATPase activity. The top hit to emerge from the screen, KNX-002, inhibited TgMyoA with little to no effect on any of the vertebrate myosins tested. KNX-002 was also active against parasites, inhibiting parasite motility and growth in culture in a dose-dependent manner. We used chemical mutagenesis, selection in KNX-002, and targeted sequencing to identify a mutation in TgMyoA (T130A) that renders the recombinant motor less sensitive to compound. Compared to wild-type parasites, parasites expressing the T130A mutation showed reduced sensitivity to KNX-002 in motility and growth assays, confirming TgMyoA as a biologically relevant target of KNX-002. Finally, we present evidence that KNX-002 can slow disease progression in mice infected with wild-type parasites, but not parasites expressing the resistance-conferring TgMyoA T130A mutation. Taken together, these data demonstrate the specificity of KNX-002 for TgMyoA, both in vitro and in vivo, and validate TgMyoA as a druggable target in infections with T. gondii. Since TgMyoA is essential for virulence, conserved in apicomplexan parasites, and distinctly different from the myosins found in humans, pharmacological inhibition of MyoA offers a promising new approach to treating the devastating diseases caused by T. gondii and other apicomplexan parasites.


Assuntos
Parasitos , Toxoplasma , Humanos , Animais , Camundongos , Toxoplasma/genética , Miosinas , Mutação , Proteínas de Protozoários/genética
2.
Proc Natl Acad Sci U S A ; 120(5): e2219533120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693095

RESUMO

Toxoplasmosis is a neglected parasitic disease necessitating public health control. Host cell invasion by Toxoplasma occurs at different stages of the parasite's life cycle and is crucial for survival and establishment of infection. In tachyzoites, which are responsible for acute toxoplasmosis, invasion involves the formation of a molecular bridge between the parasite and host cell membranes, referred to as the moving junction (MJ). The MJ is shaped by the assembly of AMA1 and RON2, as part of a complex involving additional RONs. While this essential process is well characterized in tachyzoites, the invasion process remains unexplored in bradyzoites, which form cysts and are responsible for chronic toxoplasmosis and contribute to the dissemination of the parasite between hosts. Here, we show that bradyzoites invade host cells in an MJ-dependent fashion but differ in protein composition from the tachyzoite MJ, relying instead on the paralogs AMA2 and AMA4. Functional characterization of AMA4 reveals its key role for cysts burden during the onset of chronic infection, while being dispensable for the acute phase. Immunizations with AMA1 and AMA4, alone or in complex with their rhoptry neck respective partners RON2 and RON2L1, showed that the AMA1-RON2 pair induces strong protection against acute and chronic infection, while the AMA4-RON2L1 complex targets more selectively the chronic form. Our study provides important insights into the molecular players of bradyzoite invasion and indicates that invasion of cyst-forming bradyzoites contributes to cyst burden. Furthermore, we validate AMA-RON complexes as potential vaccine candidates to protect against toxoplasmosis.


Assuntos
Parasitos , Toxoplasma , Toxoplasmose , Animais , Toxoplasma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Infecção Persistente , Toxoplasmose/metabolismo , Parasitos/metabolismo , Vacinação
3.
MAbs ; 14(1): 2141637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343329

RESUMO

ABBREVIATIONS: CE-SDS: capillary electrophoresis sodium dodecyl sulfate; DSC: differential scanning calorimetry; FACS: fluorescence-activated cell sorting; FSA: full-sized antibody; Her2: human epidermal growth factor receptor 2; MFI: mean fluorescent intensity; OAA: one-armed antibody; PBS: phosphate-buffered saline; PDB: Protein Data Bank; SEC: size-exclusion chromatography; prepSEC (preparative SEC); RMSD: root-mean-square deviation; RU: resonance units; SPR: surface plasmon resonance; TAA: tumor-associated antigen; WT: wild-type.


Assuntos
Imunoglobulina A , Humanos , Cromatografia em Gel
4.
Acta Crystallogr D Struct Biol ; 78(Pt 5): 623-632, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35503210

RESUMO

The structure of the antigen-binding fragment (Fab) of mouse monoclonal antibody 7H2.2 in complex with a 15-residue fragment from the metalloproteinase sperm acrosomal SLLP1 binding protein (SAS1B), which is a molecular and cellular candidate for both cancer therapy and female contraception, has been determined at 2.75 Šresolution by single-crystal X-ray diffraction. Although the crystallization conditions contained the final 148 C-terminal residues of SAS1B, the Fab was observed to crystallize in complex with a 15-residue fragment corresponding to one of only two elements of secondary structure that are predicted to be ordered within the C-terminal region of SAS1B. The antigen forms an amphipathic α-helix that binds the 7H2.2 combining site via hydrophilic residues in an epitope that spans the length of the antigen α-helix, with only two CH-π interactions observed along the edge of the interface between the antibody and antigen. Interestingly, the paratope contains two residues mutated away from the germline (YL32F and YH58R), as well as a ProH96-ThrH97-AspH98-AspH99 insertion within heavy chain CDR3. The intact 7H2.2 antibody exhibits high affinity for the SAS1B antigen, with 1:1 binding and nanomolar affinity for both the SAS1B C-terminal construct used for crystallization (3.38 ± 0.59 nM) and a 15-amino-acid synthetic peptide construct corresponding to the helical antigen observed within the crystal structure (1.60 ± 0.31 nM). The SAS1B-antibody structure provides the first structural insight into any portion of the subdomain architecture of the C-terminal region of the novel cancer-oocyte tumor surface neoantigen SAS1B and provides a basis for the targeted use of SAS1B.


Assuntos
Anticorpos Monoclonais , Neoplasias , Animais , Anticorpos Monoclonais/química , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Feminino , Fragmentos Fab das Imunoglobulinas/química , Camundongos , Oócitos/metabolismo , Conformação Proteica
5.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31829496

RESUMO

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Assuntos
Enterovirus , Animais , Enterovirus/genética , Enterovirus/metabolismo , Complexo de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Células Sf9 , Replicação Viral
6.
Structure ; 28(2): 145-156.e5, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31831213

RESUMO

The class I phosphoinositide 3-kinases (PI3Ks) are key signaling enzymes composed of a heterodimer of a p110 catalytic subunit and a p85 regulatory subunit, with PI3K mutations being causative of multiple human diseases including cancer, primary immunodeficiencies, and developmental disorders. Mutations in the p85α regulatory subunit encoded by PIK3R1 can both activate PI3K through oncogenic truncations in the iSH2 domain, or inhibit PI3K through developmental disorder mutations in the cSH2 domain. Using a combined biochemical and hydrogen deuterium exchange mass spectrometry approach we have defined the molecular basis for how these mutations alter the activity of p110α/p110δ catalytic subunits. We find that the oncogenic Q572∗ truncation of PIK3R1 disrupts all p85-inhibitory inputs, with p110α being hyper-activated compared with p110δ. In addition, we find that the R649W mutation in the cSH2 of PIK3R1 decreases sensitivity to activation by receptor tyrosine kinases. This work reveals unique insight into isoform-specific regulation of p110s by p85α.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Mutação , Domínio Catalítico , Classe I de Fosfatidilinositol 3-Quinases/química , Classe Ia de Fosfatidilinositol 3-Quinase/química , Ativação Enzimática , Humanos , Espectrometria de Massa com Troca Hidrogênio-Deutério , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
7.
NPJ Vaccines ; 3: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30002917

RESUMO

Transmission-blocking vaccines are based on eliciting antibody responses in the vertebrate host that disrupt parasite development in the mosquito vector and prevent malaria transmission. The surface protein Pfs47 is present in Plasmodium falciparum gametocytes and female gametes. The potential of Pfs47 as a vaccine target was evaluated. Soluble full-length recombinant protein, consisting of three domains, was expressed in E. coli as a thioredoxin fusion (T-Pfs47). The protein was immunogenic, and polyclonal and monoclonal antibodies (mAb) were obtained, but they did not confer transmission blocking activity (TBA). All fourteen mAb targeted either domains 1 or 3, but not domain 2 (D2), and immune reactivity to D2 was also very low in polyclonal mouse IgG after T-Pfs47 immunization. Disruption of the predicted disulfide bond in D2, by replacing cysteines for alanines (C230A and C260A), allowed expression of recombinant D2 protein in E. coli. A combination of mAbs targeting D2, and deletion proteins from this domain, allowed us to map a central 52 amino acid (aa) region where antibody binding confers strong TBA (78-99%). This 52 aa antigen is immunogenic and well conserved, with only seven haplotypes world-wide that share 96-98% identity. Neither human complement nor the mosquito complement-like system are required for the observed TBA. A dramatic reduction in ookinete numbers and ookinete-specific transcripts was observed, suggesting that the antibodies are interacting with female gametocytes and preventing fertilization.

8.
Mol Microbiol ; 108(5): 519-535, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29505111

RESUMO

The Toxoplasma gondii locus mitochondrial association factor 1 (MAF1) encodes multiple paralogs, some of which mediate host mitochondrial association (HMA). Previous work showed that HMA was a trait that arose in T. gondii through neofunctionalization of an ancestral MAF1 ortholog. Structural analysis of HMA-competent and incompetent MAF1 paralogs (MAF1b and MAF1a, respectively) revealed that both paralogs harbor an ADP ribose binding macro-domain, with comparatively low (micromolar) affinity for ADP ribose. Replacing the 16 C-terminal residues of MAF1b with those of MAF1a abrogated HMA, and we also show that only three residues in the C-terminal helix are required for MAF1-mediated HMA. Importantly these same three residues are also required for the in vivo growth advantage conferred by MAF1b, providing a definitive link between in vivo proliferation and manipulation of host mitochondria. Co-immunoprecipitation assays reveal that the ability to interact with the mitochondrial MICOS complex is shared by HMA-competent and incompetent MAF1 paralogs and mutants. The weak ADPr coordination and ability to interact with the MICOS complex shared between divergent paralogs may represent modular ancestral functions for this tandemly expanded and diversified T. gondii locus.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Adenosina Difosfato Ribose/metabolismo , Animais , Feminino , Fibroblastos/citologia , Fibroblastos/parasitologia , Prepúcio do Pênis/citologia , Loci Gênicos , Interações Hospedeiro-Parasita/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Toxoplasma/genética
9.
Nat Microbiol ; 2(10): 1358-1366, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28848228

RESUMO

Apicomplexan parasites are important pathogens of humans and domestic animals, including Plasmodium species (the agents of malaria) and Toxoplasma gondii, which is responsible for toxoplasmosis. They replicate within the cells of their animal hosts, to which they gain access using a unique parasite-driven invasion process. At the core of the invasion machine is a structure at the interface between the invading parasite and host cell called the moving junction (MJ) 1 . The MJ serves as both a molecular doorway to the host cell and an anchor point enabling the parasite to engage its motility machinery to drive the penetration of the host cell 2 , ultimately yielding a protective vacuole 3 . The MJ is established through self-assembly of parasite proteins at the parasite-host interface 4 . However, it is unknown whether host proteins are subverted for MJ formation. Here, we show that Toxoplasma parasite rhoptry neck proteins (RON2, RON4 and RON5) cooperate to actively recruit the host CIN85, CD2AP and the ESCRT-I components ALIX and TSG101 to the MJ during invasion. We map the interactions in detail and demonstrate that the parasite mimics and subverts conserved binding interfaces with remarkable specificity. Parasite mutants unable to recruit these host proteins show inefficient host cell invasion in culture and attenuated virulence in mice. This study reveals molecular mechanisms by which parasites subvert widely conserved host machinery to force highly efficient host cell access.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade , Toxoplasmose/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Expressão Gênica , Vetores Genéticos , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Organismos Geneticamente Modificados , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas Recombinantes , Células Sf9 , Toxoplasma/genética , Fatores de Transcrição/metabolismo
10.
PLoS One ; 11(1): e0144764, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731670

RESUMO

Plasmodium falciparum is an obligate intracellular protozoan parasite that employs a highly sophisticated mechanism to access the protective environment of the host cells. Key to this mechanism is the formation of an electron dense ring at the parasite-host cell interface called the Moving Junction (MJ) through which the parasite invades. The MJ incorporates two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1) and its receptor, the Rhoptry Neck Protein (RON) complex, the latter one being targeted to the host cell membrane during invasion. Crystal structures of AMA1 have shown that a partially mobile loop, termed the DII loop, forms part of a deep groove in domain I and overlaps with the RON2 binding site. To investigate the mechanism by which the DII loop influences RON2 binding, we measured the kinetics of association and dissociation and binding equilibria of a PfRON2sp1 peptide with both PfAMA1 and an engineered form of PfAMA1 where the flexible region of the DII loop was replaced by a short Gly-Ser linker (ΔDII-PfAMA1). The reactions were tracked by fluorescence anisotropy as a function of temperature and concentration and globally fitted to acquire the rate constants and corresponding thermodynamic profiles. Our results indicate that both PfAMA1 constructs bound to the PfRON2sp1 peptide with the formation of one intermediate in a sequential reversible reaction: A↔B↔C. Consistent with Isothermal Titration Calorimetry measurements, final complex formation was enthalpically driven and slightly entropically unfavorable. Importantly, our experimental data shows that the DII loop lengthened the complex half-life time by 18-fold (900 s and 48 s at 25°C for Pf and ΔDII-Pf complex, respectively). The longer half-life of the Pf complex appeared to be driven by a slower dissociation process. These data highlight a new influential role for the DII loop in kinetically locking the functional binary complex to enable host cell invasion.


Assuntos
Antígenos de Protozoários/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Algoritmos , Sequência de Aminoácidos , Anisotropia , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Sítios de Ligação/genética , Calorimetria , Meia-Vida , Cinética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Plasmodium falciparum/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Temperatura , Termodinâmica
11.
Proc Natl Acad Sci U S A ; 113(2): 350-5, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26712000

RESUMO

Vertically transmitted symbionts that protect their hosts against parasites and pathogens are well known from insects, yet the underlying mechanisms of symbiont-mediated defense are largely unclear. A striking example of an ecologically important defensive symbiosis involves the woodland fly Drosophila neotestacea, which is protected by the bacterial endosymbiont Spiroplasma when parasitized by the nematode Howardula aoronymphium. The benefit of this defense strategy has led to the rapid spread of Spiroplasma throughout the range of D. neotestacea, although the molecular basis for this protection has been unresolved. Here, we show that Spiroplasma encodes a ribosome-inactivating protein (RIP) related to Shiga-like toxins from enterohemorrhagic Escherichia coli and that Howardula ribosomal RNA (rRNA) is depurinated during Spiroplasma-mediated protection of D. neotestacea. First, we show that recombinant Spiroplasma RIP catalyzes depurination of 28S rRNAs in a cell-free assay, as well as Howardula rRNA in vitro at the canonical RIP target site within the α-sarcin/ricin loop (SRL) of 28S rRNA. We then show that Howardula parasites in Spiroplasma-infected flies show a strong signal of rRNA depurination consistent with RIP-dependent modification and large decreases in the proportion of 28S rRNA intact at the α-sarcin/ricin loop. Notably, host 28S rRNA is largely unaffected, suggesting targeted specificity. Collectively, our study identifies a novel RIP in an insect defensive symbiont and suggests an underlying RIP-dependent mechanism in Spiroplasma-mediated defense.


Assuntos
Drosophila/metabolismo , Drosophila/microbiologia , Proteínas Inativadoras de Ribossomos/metabolismo , Spiroplasma/fisiologia , Simbiose , Animais , Endorribonucleases/química , Proteínas Fúngicas/química , Reação em Cadeia da Polimerase , RNA Ribossômico 28S/metabolismo , Coelhos , Proteínas Recombinantes/isolamento & purificação , Ribossomos/metabolismo , Ricina/química , Análise de Sequência de RNA
12.
PLoS One ; 10(5): e0126206, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25955165

RESUMO

Apicomplexan parasites are the causative agents of globally prevalent diseases including malaria and toxoplasmosis. These obligate intracellular pathogens have evolved a sophisticated host cell invasion strategy that relies on a parasite-host cell junction anchored by interactions between apical membrane antigens (AMAs) on the parasite surface and rhoptry neck 2 (RON2) proteins discharged from the parasite and embedded in the host cell membrane. Key to formation of the AMA1-RON2 complex is displacement of an extended surface loop on AMA1 called the DII loop. While conformational flexibility of the DII loop is required to expose the mature RON2 binding groove, a definitive role of this substructure has not been elucidated. To establish a role of the DII loop in Toxoplasma gondii AMA1, we engineered a form of the protein where the mobile portion of the loop was replaced with a short Gly-Ser linker (TgAMA1ΔDIIloop). Isothermal titration calorimetry measurements with a panel of RON2 peptides revealed an influential role for the DII loop in governing selectivity. Most notably, an Eimeria tenella RON2 (EtRON2) peptide that showed only weak binding to TgAMA1 bound with high affinity to TgAMA1ΔDIIloop. To define the molecular basis for the differential binding, we determined the crystal structure of TgAMA1ΔDIIloop in complex with the EtRON2 peptide. When analyzed in the context of existing AMA1-RON2 structures, spatially distinct anchor points in the AMA1 groove were identified that, when engaged, appear to provide the necessary traction to outcompete the DII loop. Collectively, these data support a model where the AMA1 DII loop serves as a structural gatekeeper to selectively filter out ligands otherwise capable of binding with high affinity in the AMA1 apical groove. These data also highlight the importance of considering the functional implications of the DII loop in the ongoing development of therapeutic intervention strategies targeting the AMA1-RON2 invasion complex.


Assuntos
Antígenos de Protozoários/química , Ligantes , Toxoplasma/metabolismo , Sequência de Aminoácidos , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Sítios de Ligação , Calorimetria , Clonagem Molecular , Cristalografia por Raios X , Eimeria tenella/metabolismo , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência
13.
mBio ; 6(1)2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25670772

RESUMO

UNLABELLED: Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. IMPORTANCE: Sarcocystis neurona is a member of the coccidia, a clade of single-celled apicomplexan parasites responsible for major economic and health care burdens worldwide. A cousin of Plasmodium, Cryptosporidium, Theileria, and Eimeria, Sarcocystis is one of the most successful parasite genera; it is capable of infecting all vertebrates (fish, reptiles, birds, and mammals-including humans). The past decade has witnessed an increasing number of human outbreaks of clinical significance associated with acute sarcocystosis. Among Sarcocystis species, S. neurona has a wide host range and causes fatal encephalitis in horses, marine mammals, and several other mammals. To provide insights into the transition from a purely enteric parasite (e.g., Eimeria) to one that forms tissue cysts (Toxoplasma), we present the first genome sequence of S. neurona. Comparisons with other coccidian genomes highlight the molecular innovations that drive its distinct life cycle strategies.


Assuntos
Genoma de Protozoário , Sarcocystis/crescimento & desenvolvimento , Sarcocystis/genética , Sarcocistose/parasitologia , Sarcocistose/veterinária , Animais , Humanos , Estágios do Ciclo de Vida , Filogenia , Proteínas de Protozoários/genética , Sarcocystis/classificação , Sarcocystis/metabolismo
14.
J Med Chem ; 57(7): 2874-83, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24625057

RESUMO

We report here a peptide-driven approach to create first inhibitors of the chromobox homolog 7 (CBX7), a methyllysine reader protein. CBX7 uses its chromodomain to bind histone 3, lysine 27 trimethylated (H3K27me3), and this recognition event is implicated in silencing multiple tumor suppressors. Small trimethyllysine containing peptides were used as the basic scaffold from which potent ligands for disruption of CBX7-H3K27me3 complex were developed. Potency of ligands was determined by fluorescence polarization and/or isothermal titration calorimetry. Binding of one ligand was characterized in detail using 2D NMR and X-ray crystallography, revealing a structural motif unique among human CBX proteins. Inhibitors with a ∼200 nM potency for CBX7 binding and 10-fold/400-fold selectivity over related CBX8/CBX1 proteins were identified. These are the first reported inhibitors of any chromodomain.


Assuntos
Histonas/química , Lisina/análogos & derivados , Fragmentos de Peptídeos/farmacologia , Complexo Repressor Polycomb 1/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Polarização de Fluorescência , Histonas/metabolismo , Humanos , Lisina/farmacologia , Modelos Moleculares , Estrutura Molecular , Complexo Repressor Polycomb 1/antagonistas & inibidores , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
15.
BMC Struct Biol ; 12: 16, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22747601

RESUMO

BACKGROUND: S100 proteins are a family of small, EF-hand containing calcium-binding signaling proteins that are implicated in many cancers. While the majority of human S100 proteins share 25-65% sequence similarity, S100A7 and its recently identified paralog, S100A15, display 93% sequence identity. Intriguingly, however, S100A7 and S100A15 serve distinct roles in inflammatory skin disease; S100A7 signals through the receptor for advanced glycation products (RAGE) in a zinc-dependent manner, while S100A15 signals through a yet unidentified G-protein coupled receptor in a zinc-independent manner. Of the seven divergent residues that differentiate S100A7 and S100A15, four cluster in a zinc-binding region and the remaining three localize to a predicted receptor-binding surface. RESULTS: To investigate the structural and functional consequences of these divergent clusters, we report the X-ray crystal structures of S100A15 and S100A7D24G, a hybrid variant where the zinc ligand Asp24 of S100A7 has been substituted with the glycine of S100A15, to 1.7 Å and 1.6 Å resolution, respectively. Remarkably, despite replacement of the Asp ligand, zinc binding is retained at the S100A15 dimer interface with distorted tetrahedral geometry and a chloride ion serving as an exogenous fourth ligand. Zinc binding was confirmed using anomalous difference maps and solution binding studies that revealed similar affinities of zinc for S100A15 and S100A7. Additionally, the predicted receptor-binding surface on S100A7 is substantially more basic in S100A15 without incurring structural rearrangement. CONCLUSIONS: Here we demonstrate that S100A15 retains the ability to coordinate zinc through incorporation of an exogenous ligand resulting in a unique zinc-binding site among S100 proteins. The altered surface chemistry between S100A7 and S100A15 that localizes to the predicted receptor binding site is likely responsible for the differential recognition of distinct protein targets. Collectively, these data provide novel insight into the structural and functional consequences of the divergent surfaces between S100A7 and S100A15 that may be exploited for targeted therapies.


Assuntos
Receptores de Superfície Celular/metabolismo , Proteínas S100/química , Proteínas S100/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sítios de Ligação , Complexo do Signalossomo COP9 , Cristalografia por Raios X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Receptor para Produtos Finais de Glicação Avançada , Receptores Imunológicos/metabolismo , Proteína A7 Ligante de Cálcio S100 , Propriedades de Superfície
16.
J Biol Chem ; 286(17): 15577-85, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21388965

RESUMO

The phenylacetic acid (PAA) degradation pathway is the sole aerobic route for phenylacetic acid metabolism in bacteria and facilitates degradation of environmental pollutants such as styrene and ethylbenzene. The PAA pathway also is implicated in promoting Burkholderia cenocepacia infections in cystic fibrosis patients. Intriguingly, the first enzyme in the PAA pathway is present in two copies (paaK1 and paaK2), yet each subsequent enzyme is present in only a single copy. Furthermore, sequence divergence indicates that PaaK1 and PaaK2 form a unique subgroup within the adenylate-forming enzyme (AFE) superfamily. To establish a biochemical rationale for the existence of the PaaK paralogs in B. cenocepacia, we present high resolution x-ray crystal structures of a selenomethionine derivative of PaaK1 in complex with ATP and adenylated phenylacetate intermediate complexes of PaaK1 and PaaK2 in distinct conformations. Structural analysis reveals a novel N-terminal microdomain that may serve to recruit subsequent PAA enzymes, whereas a bifunctional role is proposed for the P-loop in stabilizing the C-terminal domain in conformation 2. The potential for different kinetic profiles was suggested by a structurally divergent extension of the aryl substrate pocket in PaaK1 relative to PaaK2. Functional characterization confirmed this prediction, with PaaK1 possessing a lower K(m) for phenylacetic acid and better able to accommodate 3' and 4' substitutions on the phenyl ring. Collectively, these results offer detailed insight into the reaction mechanism of a novel subgroup of the AFE superfamily and provide a clear biochemical rationale for the presence of paralogous copies of PaaK of B. cenocepacia.


Assuntos
Burkholderia cenocepacia/enzimologia , Coenzima A Ligases/química , Trifosfato de Adenosina , Cristalografia por Raios X , Fibrose Cística , Cinética , Ligantes , Fenilacetatos , Conformação Proteica
17.
J Biol Chem ; 285(20): 15644-15652, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20304917

RESUMO

Apical membrane antigen 1 (AMA1) is an essential component of the moving junction complex used by Apicomplexan parasites to invade host cells. We report the 2.0 A resolution x-ray crystal structure of the full ectodomain (domains I, II, and III) of AMA1 from the pervasive protozoan parasite Toxoplasma gondii. The structure of T. gondii AMA1 (TgAMA1) is the most complete of any AMA1 structure to date, with more than 97.5% of the ectodomain unambiguously modeled. Comparative sequence analysis reveals discrete segments of divergence in TgAMA1 that map to areas of established functional importance in AMA1 from Plasmodium vivax (PvAMA1) and Plasmodium falciparum (PfAMA1). Inspection of the TgAMA1 structure reveals a network of apical surface loops, reorganized in both size and chemistry relative to PvAMA1/PfAMA1, that appear to serve as structural filters restricting access to a central hydrophobic groove. The terminal portion of this groove is formed by an extended loop from DII that is 14 residues shorter in TgAMA1. A pair of tryptophan residues (Trp(353) and Trp(354)) anchor the DII loop in the hydrophobic groove and frame a conserved tyrosine (Tyr(230)), forming a contiguous surface that may be critical for moving junction assembly. The minimalist DIII structure folds into a cystine knot that probably stabilizes and orients the bulk of the ectodmain without providing excess surface area to which invasion-inhibitory antibodies can be generated. The detailed structural characterization of TgAMA1 provides valuable insight into the mechanism of host cell invasion by T. gondii.


Assuntos
Antígenos de Protozoários/química , Toxoplasma/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Protozoários/genética , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Filogenia , Homologia de Sequência de Aminoácidos
18.
Protein Sci ; 18(12): 2615-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19844956

RESUMO

S100A7 (psoriasin) is a calcium- and zinc-binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c-jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp(56)Gly, Leu(78)Met, and Gln(88)Lys-S100A7(3)) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A7(3)/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A7(3), demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 A. Despite being positioned at the dimer interface, the Leu(78)Met mutation is easily accommodated and contributes to a methionine-rich pocket formed by Met(12), Met(15), and Met(34). In addition to altering the surface charge, the Gln(88)Lys mutation results in a nearby rotameric shift in Tyr(85), leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp(56) to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A7(3) provides a unique perspective from which to characterize the S100A7-Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.


Assuntos
Neoplasias da Mama/genética , Carcinoma/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas S100/química , Proteínas S100/genética , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Complexo do Signalossomo COP9 , Carcinoma/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Cristalografia por Raios X , Feminino , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/metabolismo , Alinhamento de Sequência
19.
Biochemistry ; 48(44): 10591-600, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19810752

RESUMO

S100A7 (psoriasin) is a member of the S100 family of signaling proteins. It is implicated in and considered a therapeutic target for inflammation and cancer, yet no small molecule ligands for S100A7 have been identified. To begin the development of specific small molecule inhibitors of S100A7 function, we have used a series of surface binding fluorescent dyes to probe the surface hydrophobic sites. Two naphthalene-based dyes (2,6-ANS and 1,8-ANS) were found to bind S100A7 in a distinct cleft. We characterized the binding interaction by determining both the structure of S100A7 bound to 2,6-ANS and the structure of S100A7 bound to 1,8-ANS to 1.6 A. In both cases, two molecules of dye were docked such that the naphthalene groups were positioned in two symmetry-related grooves that are formed by the N-terminal helices of each monomer. We observed that Met12 acts as a gatekeeper to the binding cleft, adopting an "open" conformation for the more elongated 2,6-ANS while remaining in a "closed" conformation for the more compact 1,8-ANS. Steady-state fluorescence experiments revealed that S100A7 binds two copies of 2,6-ANS, each with a K(d) of 125 muM. Time-resolved fluorescence lifetime measurements indicated that the two molecules of 2,6-ANS bind in two independent binding sites with different fluorescence lifetimes, suggesting that the S100A7 homodimer is not perfectly symmetric in solution. Isothermal titration calorimetry studies demonstrate that S100A7 has a higher affinity for 2,6-ANS than 1,8-ANS. Yeast two-hybrid studies were also used to probe contributions of individual residues of an S100A7 triple mutant with respect to Jab1 binding. Mutation of Leu78, which forms part of the Met12 cleft occupied by 2,6-ANS, reduced the level of Jab1 binding, suggesting a potentially important role for the Met12 hydrophobic pocket in defining a Jab1 interface. Additional Y2H studies also delineate contributions of Gln88 and in particular Asp56 that shows the most significant abrogated binding to Jab1. Collectively, these data suggest a complex interaction between S100A7 and the much larger Jab1. These studies form the basis for the development of small molecule reporters and modifiers of S100A7 form and function.


Assuntos
Inflamação/metabolismo , Neoplasias/metabolismo , Proteínas S100/metabolismo , Sítios de Ligação , Calorimetria , Cristalografia por Raios X , Fluorescência , Humanos , Modelos Moleculares , Conformação Proteica , Proteína A7 Ligante de Cálcio S100 , Proteínas S100/química , Técnicas do Sistema de Duplo-Híbrido
20.
Proc Natl Acad Sci U S A ; 104(24): 10128-33, 2007 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-17537914

RESUMO

Natural killer (NK) cells express activating and inhibitory receptors that, in concert, survey cells for proper expression of cell surface major histocompatibility complex (MHC) class I molecules. The mouse cytomegalovirus encodes an MHC-like protein, m157, which is the only known viral antigen to date capable of engaging both activating (Ly49H) and inhibitory (Ly49I) NK cell receptors. We have determined the 3D structure of m157 and studied its biochemical and cellular interactions with the Ly49H and Ly49I receptors. m157 has a characteristic MHC-fold, yet possesses several unique structural features not found in other MHC class I-like molecules. m157 does not bind peptides or other small ligands, nor does it associate with beta(2)-microglobulin. Instead, m157 engages in extensive intra- and intermolecular interactions within and between its domains to generate a compact minimal MHC-like molecule. m157's binding affinity for Ly49I (K(d) approximately 0.2 microM) is significantly higher than that of classical inhibitory Ly49-MHC interactions. Analysis of viral escape mutations on m157 that render it resistant to NK killing reveals that it is likely to be recognized by Ly49H in a binding mode that differs from Ly49/MHC-I. In addition, Ly49H+ NK cells can efficiently lyse RMA cells expressing m157, despite the presence of native MHC class I. Collectively, our results show that m157 represents a structurally divergent form of MHC class I-like proteins that directly engage Ly49 receptors with appreciable affinity in a noncanonical fashion.


Assuntos
Antígenos Ly/química , Células Matadoras Naturais/imunologia , Lectinas Tipo C/química , Muromegalovirus/imunologia , Receptores Imunológicos/química , Receptores Imunológicos/imunologia , Animais , Baculoviridae/genética , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , Dissulfetos/química , Antígenos de Histocompatibilidade Classe I/imunologia , Ligação de Hidrogênio , Ligantes , Linfoma de Células T/patologia , Camundongos , Modelos Moleculares , Subfamília A de Receptores Semelhantes a Lectina de Células NK , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Imunológicos/genética , Receptores Semelhantes a Lectina de Células NK
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA