Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(12): 4291-4303, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36930733

RESUMO

Microparticles of polyethylene and polypropylene are largely found in aquatic environments because they are the most produced and persistent plastic materials. Once in biological media, they are covered by a layer of molecules, the so-called corona, mostly composed of proteins. A yeast protein extract from Saccharomyces cerevisiae was used as a protein system to observe interactions in complex biological media. Proteins, acting as surfactants and providing hydrophilic surfaces, allow the dispersion of highly hydrophobic particles in water and stabilize them. After 24 h, the microplastic quantity was up to 1 × 1011 particles per liter, whereas without protein, no particles remained in solution. Label-free imaging of the protein corona by synchrotron radiation deep UV fluorescence microscopy (SR-DUV) was performed. In situ images of the protein corona were obtained, and the adsorbed protein quantity, the coverage rate, and the corona heterogeneity were determined. The stability kinetics of the microplastic suspensions were measured by light transmission using a Turbiscan analyzer. Together, the microscopic and kinetics results demonstrate that the protein corona can very efficiently stabilize microplastics in solution provided that the protein corona quality is sufficient. Microplastic stability depends on different parameters such as the particle's intrinsic properties (size, density, hydrophobicity) and the protein corona formation that changes the particle wettability, electrostatic charge, and steric hindrance. By controlling these parameters with proteins, it becomes possible to keep microplastics in and out of solution, paving the way for applications in the field of microplastic pollution control and remediation.


Assuntos
Coroa de Proteína , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Coroa de Proteína/química , Polipropilenos , Água , Poluentes Químicos da Água/química
2.
Sci Rep ; 13(1): 1227, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681766

RESUMO

Protein aggregation in biotherapeutics can reduce their activity and effectiveness. It may also promote immune reactions responsible for severe adverse effects. The impact of plastic materials on protein destabilization is not totally understood. Here, we propose to deconvolve the effects of material surface, air/liquid interface, and agitation to decipher their respective role in protein destabilization and aggregation. We analyzed the effect of polypropylene, TEFLON, glass and LOBIND surfaces on the stability of purified proteins (bovine serum albumin, hemoglobin and α-synuclein) and on a cell extract composed of 6000 soluble proteins during agitation (P = 0.1-1.2 W/kg). Proteomic analysis revealed that chaperonins, intrinsically disordered proteins and ribosomes were more sensitive to the combined effects of material surfaces and agitation while small metabolic oligomers could be protected in the same conditions. Protein loss observations coupled to Raman microscopy, dynamic light scattering and proteomic allowed us to propose a mechanistic model of protein destabilization by plastics. Our results suggest that protein loss is not primarily due to the nucleation of small aggregates in solution, but to the destabilization of proteins exposed to material surfaces and their subsequent aggregation at the sheared air/liquid interface, an effect that cannot be prevented by using LOBIND tubes. A guidance can be established on how to minimize these adverse effects. Remove one of the components of this combined stress - material, air (even partially), or agitation - and proteins will be preserved.


Assuntos
Plásticos , Proteoma , Agregados Proteicos , Proteômica , Soroalbumina Bovina
3.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042822

RESUMO

Functional and versatile nano- and microassemblies formed by biological molecules are found at all levels of life, from cell organelles to full organisms. Understanding the chemical and physicochemical determinants guiding the formation of these assemblies is crucial not only to understand the biological processes they carry out but also to mimic nature. Among the synthetic peptides forming well-defined nanostructures, the octapeptide Lanreotide has been considered one of the best characterized, in terms of both the atomic structure and its self-assembly process. In the present work, we determined the atomic structure of Lanreotide nanotubes at 2.5-Å resolution by cryoelectron microscopy (cryo-EM). Surprisingly, the asymmetric unit in the nanotube contains eight copies of the peptide, forming two tetramers. There are thus eight different environments for the peptide, and eight different conformations in the nanotube. The structure built from the cryo-EM map is strikingly different from the molecular model, largely based on X-ray fiber diffraction, proposed 20 y ago. Comparison of the nanotube with a crystal structure at 0.83-Å resolution of a Lanreotide derivative highlights the polymorphism for this peptide family. This work shows once again that higher-order assemblies formed by even well-characterized small peptides are very difficult to predict.


Assuntos
Nanotubos/química , Nanotubos/ultraestrutura , Peptídeos Cíclicos/química , Somatostatina/análogos & derivados , Microscopia Crioeletrônica/métodos , Modelos Moleculares , Peptídeos/química , Peptídeos Cíclicos/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Difração de Raios X/métodos
4.
J Phys Chem B ; 125(33): 9454-9466, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34382396

RESUMO

An understanding of the conditions that govern the self-assembly process of peptides is a fundamental step toward the design of new nanostructures that possess interesting properties. In this work, we first synthesize and explore extensively diphenylalanine (FF) self-assembling crystals formed in different solvents (i.e., solvatomorphs) using polarized optical microscopy and transmission electron microscopy. Then, we develop a numerical method that allows an unambiguous classification of the solvatomorphs through a K-means automatic clustering method. In addition, we generate a two-dimensional (2D) representation of the solvatomorphic space together with the clustering results via a principal component analysis (PCA). The classification is based on structural similarities of solvatomorphs as revealed by the analysis of their respective infrared spectra. Among the 20 samples considered, 4 clear clusters are extracted within which the compounds show very similar crystalline structures. The information extracted allows us to assign many of the peaks that appear in the complex IR spectra of the samples considered. The implementation of the overall procedure we propose, i.e., "GAULOIS" and "REFRACT-R", is transferable to other types of spectra and paves the way for a systematic, fast, and accurate classification method applicable to various types of experimental spectroscopic data.


Assuntos
Nanoestruturas , Fenilalanina , Peptídeos , Solventes
5.
Nanomaterials (Basel) ; 10(2)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013169

RESUMO

Biomolecules, and particularly proteins, bind on nanoparticle (NP) surfaces to form the so-called protein corona. It is accepted that the corona drives the biological distribution and toxicity of NPs. Here, the corona composition and structure were studied using silica nanoparticles (SiNPs) of different sizes interacting with soluble yeast protein extracts. Adsorption isotherms showed that the amount of adsorbed proteins varied greatly upon NP size with large NPs having more adsorbed proteins per surface unit. The protein corona composition was studied using a large-scale label-free proteomic approach, combined with statistical and regression analyses. Most of the proteins adsorbed on the NPs were the same, regardless of the size of the NPs. To go beyond, the protein physicochemical parameters relevant for the adsorption were studied: electrostatic interactions and disordered regions are the main driving forces for the adsorption on SiNPs but polypeptide sequence length seems to be an important factor as well. This article demonstrates that curvature effects exhibited using model proteins are not determining factors for the corona composition on SiNPs, when dealing with complex biological media.

6.
PLoS One ; 12(7): e0182056, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750021

RESUMO

Noroviruses are the major cause of non-bacterial acute gastroenteritis in humans and livestock worldwide, despite being physically among the simplest animal viruses. The icosahedral capsid encasing the norovirus RNA genome is made of 90 dimers of a single ca 60-kDa polypeptide chain, VP1, arranged with T = 3 icosahedral symmetry. Here we study the conformational dynamics of this main building block of the norovirus capsid. We use molecular modeling and all-atom molecular dynamics simulations of the VP1 dimer for two genogroups with 50% sequence identity. We focus on the two points of flexibility in VP1 known from the crystal structure of the genogroup I (GI, human) capsid and from subsequent cryo-electron microscopy work on the GII capsid (also human). First, with a homology model of the GIII (bovine) VP1 dimer subjected to simulated annealing then classical molecular dynamics simulations, we show that the N-terminal arm conformation seen in the GI crystal structure is also favored in GIII VP1 but depends on the protonation state of critical residues. Second, simulations of the GI dimer show that the VP1 spike domain will not keep the position found in the GII electron microscopy work. Our main finding is a consistent propensity of the VP1 dimer to assume prominently asymmetric conformations. In order to probe this result, we obtain new SAXS data on GI VP1 dimers. These data are not interpretable as a population of symmetric dimers, but readily modeled by a highly asymmetric dimer. We go on to discuss possible implications of spontaneously asymmetric conformations in the successive steps of norovirus capsid assembly. Our work brings new lights on the surprising conformational range encoded in the norovirus major capsid protein.


Assuntos
Proteínas do Capsídeo/química , Norovirus/química , Multimerização Proteica , Sequência de Aminoácidos , Análise por Conglomerados , Sequência Conservada , Microscopia Crioeletrônica , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Prótons , Espalhamento a Baixo Ângulo , Soluções , Homologia Estrutural de Proteína
7.
J Alzheimers Dis ; 59(2): 537-541, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28527221

RESUMO

Glutathione (GSH) is a major antioxidant in humans that is involved in the detoxification of reactive radicals and peroxides. The molecular structural conformations of GSH depend on the surrounding micro-environment, and it has been experimentally evaluated using NMR and Raman spectroscopic techniques as well as by molecular dynamics simulation studies. The converging report indicates that GSH exists mainly in two major conformations, i.e., "extended" and "folded". The NMR-derived information on the GSH conformers is essential to obtain optimal acquisition parameters in in vivo MRS experiments targeted for GSH detection. To further investigate the implications of GSH conformers in in vivo MRS studies and their relative proportions in healthy and pathological conditions, a multi-center clinical research study is necessary with a common protocol for GSH detection and quantification.


Assuntos
Encéfalo/metabolismo , Glutationa/química , Espectroscopia de Ressonância Magnética , Animais , Humanos , Modelos Químicos , Conformação Proteica
8.
Bioorg Med Chem ; 19(13): 4135-43, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21605977

RESUMO

For detection of biological events in vitro, sensors using hyperpolarized (129)Xe NMR can become a powerful tool, provided the approach can bridge the gap in sensitivity. Here we propose constructs based on the non-selective grafting of cryptophane precursors on holo-transferrin. This biological system was chosen because there are many receptors on the cell surface, and endocytosis further increases this density. The study of these biosensors with K562 cell suspensions via fluorescence microscopy and (129)Xe NMR indicates a strong interaction, as well as interesting features such as the capacity of xenon to enter the cryptophane even when the biosensor is endocytosed, while keeping a high level of polarization. Despite a lack of specificity for transferrin receptors, undoubtedly due to the hydrophobic character of the cryptophane moiety that attracts the biosensor into the cell membrane, these biosensors allow the first in-cell probing of biological events using hyperpolarized xenon.


Assuntos
Técnicas Biossensoriais/métodos , Transferrina/química , Linhagem Celular Tumoral , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica , Isótopos de Xenônio/química , Isótopos de Xenônio/metabolismo
9.
FEBS J ; 277(24): 5086-96, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21078121

RESUMO

Cadmium is a heavy metal and a pollutant that can be found in large quantities in the environment from industrial waste. Its toxicity for living organisms could arise from its ability to alter thiol-containing cellular components. Glutathione is an abundant tripeptide (γ-Glu-Cys-Gly) that is described as the first line of defence against cadmium in many cell types. NMR experiments for structure and dynamics determination, molecular simulations, competition reactions for metal chelation by different metabolites (γ-Glu-Cys-Gly, α-Glu-Cys-Gly and γ-Glu-Cys) combined with biochemical and genetics experiments have been performed to propose a full description of bio-inorganic reactions occurring in the early steps of cadmium detoxification processes. Our results give unambiguous information about the spontaneous formation, under physiological conditions, of the Cd(GS)(2) complex, about the nature of ligands involved in cadmium chelation by glutathione, and provide insights on the structures of Cd(GS)(2) complexes in solution at different pH. We also show that γ-Glu-Cys, the precursor of glutathione, forms a stable complex with cadmium, but biological studies of the first steps of cadmium detoxification reveal that this complex does not seem to be relevant for this purpose.


Assuntos
Cádmio/química , Glutationa/química , Inativação Metabólica , Cádmio/metabolismo , Cádmio/toxicidade , Dimerização , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Saccharomyces cerevisiae/metabolismo , Soluções
10.
Nucleic Acids Res ; 37(22): 7691-700, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19808934

RESUMO

HIV-1 integrase integrates retroviral DNA through 3'-processing and strand transfer reactions in the presence of a divalent cation (Mg(2+) or Mn(2+)). The alpha4 helix exposed at the catalytic core surface is essential to the specific recognition of viral DNA. To define group determinants of recognition, we used a model composed of a peptide analogue of the alpha4 helix, oligonucleotides mimicking processed and unprocessed U5 LTR end and 5 mM Mg(2+). Circular dichroism, fluorescence and NMR experiments confirmed the implication of the alpha4 helix polar/charged face in specific and non-specific bindings to LTR ends. The specific binding requires unprocessed LTR ends-i.e. an unaltered 3'-processing site CA downward arrowGT3'-and is reinforced by Mg(2+) (K(d) decreases from 2 to 0.8 nM). The latter likely interacts with the ApG and GpT3' steps of the 3'-processing site. With deletion of GT3', only persists non-specific binding (K(d) of 100 microM). Proton chemical shift deviations showed that specific binding need conserved amino acids in the alpha4 helix and conserved nucleotide bases and backbone groups at LTR ends. We suggest a conserved recognition mechanism based on both direct and indirect readout and which is subject to evolutionary pressure.


Assuntos
DNA Viral/química , Integrase de HIV/química , Repetição Terminal Longa de HIV , Peptídeos/química , Sítios de Ligação , Dicroísmo Circular , DNA Viral/metabolismo , Polarização de Fluorescência , HIV-1/genética , Magnésio/química , Modelos Moleculares , Mimetismo Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA