Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113980, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309883

RESUMO

Incorporation of two sesame cake preparations, differing in fat, 11 % (LF) and 17 % (HF), and protein, 51 % (LF) and 44 % (HF), contents, respectively, into breads at 6, 12 and 20 % wheat flour substitution levels, led to enriched end-products with antioxidants, suitable also to carry the 'high protein' and 'fiber source' nutrition claims (at ≥ 12 % substitution level). Sesame cake decreased wheat dough resistance to mixing and extension, and peak viscosity (empirical rheology), in a concentration-dependent manner, being more pronounced for LF formulations. Breads with LF incorporation ≥ 12 % had lower specific volumes and harder crumb (texture analysis) throughout storage, than control (100 % wheat flour); however, such adverse effects were diminished in HF bread formulations due to the plasticizing and emulsifying action of the sesame cake fat. Calorimetry showed that the sesame cake had no effect on starch retrogradation, but enhanced amylose-lipid complex formation. Antioxidant activity (ABTS, DPPH and FRAP assays), and phenolic acids (ferulic, p-coumaric and sinapic) and lignan (sesaminol glucosides and sesamolin) contents, determined by HPLC-DAD-MS, were higher in LF breads than their HF counterparts. The presence of some sulfur (off-flavor) and pyrazine (nutty flavor) compounds (SPME-GC-MS), as well as the sesame flavor and bitterness (sensory analysis) were of higher intensity in HF breads, while the 6 % LF product received the highest overall acceptability score among all fortified products. Overall, the sesame cake can be a promising ingredient for production of functional wheat bread depending on its composition and fortification level.


Assuntos
Antioxidantes , Sesamum , Antioxidantes/análise , Pão/análise , Triticum/química , Farinha/análise
2.
Antioxidants (Basel) ; 10(12)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34943119

RESUMO

Plant solid residues obtained from the essential oil industry represent a rich source of phenolic compounds with bioactive properties to be used in the food and pharmaceutical industries. A selective and sensitive liquid chromatography-mass spectrometry (LC-MS) method was developed for the simultaneous determination of phenolic compounds in solid residues of the Lamiaceae family plants. A total of 48 compounds can be separated within 35 min by using the Poroshell-120 EC-C18 column, and a gradient mobile phase of 0.1% formic acid and acetonitrile with flow rate of 0.5 mL/min; salicylic acid was used as internal standard. The calibration curves showed good linearity in the tested concentration range for each analyte (R2 > 0.9921), while recoveries ranged from 70.1% to 115.0% with an intra-day and inter-day precision of less than 6.63% and 15.00%, respectively. Based on the retention behavior, as well as absorption and mass spectra, 17 phenolic acids, 19 flavonoids and 2 phenolic diterpenes were identified and quantified in the solid residues obtained by distillation of six aromatic plants: oregano, rosemary, sage, satureja, lemon balm, and spearmint. The method constitutes an accurate analytical and quality control tool for the simultaneous quantitation of phenolics present in solid waste residues from the essential oil industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA