Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioinform Biol Insights ; 17: 11779322231182054, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377792

RESUMO

The increasing commercialization of new gene panels based on next-generation sequencing for clinical research has significantly improved our understanding of breast cancer genetics and has led to the discovery of new mutation variants. The study included 16 unselected Moroccan breast cancer patients tested with multi-gene panel (HEVA screen panel) using Illumina Miseq, followed by Sanger sequencing to validate the most relevant mutation. Mutational analysis revealed the presence of 13 mutations (11 single-nucleotide polymorphisms [SNPs] and 2 indels), and 6 of 11 identified SNPs were predicted as pathogenic. One of the 6 pathogenic mutations was c.7874G>C, a heterozygous SNP in HD-OB domain of BRCA2 gene, which led to the arginine to threonine change at codon 2625 of the protein. This work describes the first case of a patient with breast cancer harboring this pathogenic variant and analyzes its functional impact using molecular docking and molecular dynamics simulation. Further experimental investigations are needed to validate its pathogenicity and to verify its association with breast cancer.

2.
J Pers Med ; 13(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983633

RESUMO

Breast cancer is one of the main global priorities in terms of public health. It remains the most frequent cancer in women and is the leading cause of their death. The human microbiome plays various roles in maintaining health by ensuring a dynamic balance with the host or in the appearance of various pathologies including breast cancer. In this study, we performed an analysis of bacterial signature differences between tumor and adjacent tissues of breast cancer patients in Morocco. Using 16S rRNA gene sequencing, we observed that adjacent tissue contained a much higher percentage of the Gammaproteobacteria class (35.7%) while tumor tissue was characterized by a higher percentage of Bacilli and Actinobacteria classes, with about 18.8% and 17.2% average abundance, respectively. Analysis of tumor subtype revealed enrichment of genus Sphingomonodas in TNBC while Sphingomonodas was predominant in HER2. The LEfSe and the genus level heatmap analysis revealed a higher abundance of the Rothia genus in tumor tissues. The identified microbial communities can therefore serve as potential biomarkers for prognosis and diagnosis, while also helping to develop new strategies for the treatment of breast cancer patients.

3.
J Biomol Struct Dyn ; 40(11): 5203-5210, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33402049

RESUMO

Estrogen receptor α (ERα) plays a critical role in breast cancer (BC) development. The standard therapeutic strategies for ERα- positive (ERα+) BC consist of impairing ERα signalling pathway by either estrogen competitors blocking its interaction with the ligand binding domain (LBD) or agents inhibiting the production of estrogen. These strategies are limited by many factors that lead to constitutive activation of ERα and consequently, resistance to treatment. Targeting the DNA binding domain (DBD) of ERα instead of its LBD with small-molecule inhibitors could be an alternative to impair ERα's signalling pathway. For this purpose, we conducted a structure based virtual screening of DrugBank against the crystal structure of ERα-DBD (PDB ID: 1HCQ) using the Glide module in standard precision (SP) and extra precision (XP) mode of docking. Molecules with XP Gscore less than -8 kcal/mol were selected and visually inspected to keep only the reasonable docking poses. Subsequently, these molecules were clustered using structural interaction fingerprints analysis and the complexes of the top ranked molecules of each cluster based on XP Gscore were subjected to 200 ns molecular dynamics simulations followed by MM-GBSA binding free energy calculation for the last 100 ns of each complex. In this study, we identified three molecules from DrugBank namely DB03450, DB02593 and DB08001 showing significant stability and strong interaction with the key amino acids during MD simulation suggesting a potential inhibition of the target. These molecules could be used as promising lead compounds to impair the ERα signalisation in hormone therapy-resistant breast cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Receptor alfa de Estrogênio , Antineoplásicos/química , Sítios de Ligação , Neoplasias da Mama/tratamento farmacológico , DNA/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Estrogênios , Feminino , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica
4.
Pathogens ; 9(10)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050463

RESUMO

The COVID-19 pandemic has been ongoing since its onset in late November 2019 in Wuhan, China. Understanding and monitoring the genetic evolution of the virus, its geographical characteristics, and its stability are particularly important for controlling the spread of the disease and especially for the development of a universal vaccine covering all circulating strains. From this perspective, we analyzed 30,983 complete SARS-CoV-2 genomes from 79 countries located in the six continents and collected from 24 December 2019, to 13 May 2020, according to the GISAID database. Our analysis revealed the presence of 3206 variant sites, with a uniform distribution of mutation types in different geographic areas. Remarkably, a low frequency of recurrent mutations has been observed; only 169 mutations (5.27%) had a prevalence greater than 1% of genomes. Nevertheless, fourteen non-synonymous hotspot mutations (>10%) have been identified at different locations along the viral genome; eight in ORF1ab polyprotein (in nsp2, nsp3, transmembrane domain, RdRp, helicase, exonuclease, and endoribonuclease), three in nucleocapsid protein, and one in each of three proteins: Spike, ORF3a, and ORF8. Moreover, 36 non-synonymous mutations were identified in the receptor-binding domain (RBD) of the spike protein with a low prevalence (<1%) across all genomes, of which only four could potentially enhance the binding of the SARS-CoV-2 spike protein to the human ACE2 receptor. These results along with intra-genomic divergence of SARS-CoV-2 could indicate that unlike the influenza virus or HIV viruses, SARS-CoV-2 has a low mutation rate which makes the development of an effective global vaccine very likely.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA