Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(30): eadl3629, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058785

RESUMO

Pathogen infection of host cells triggers an inflammatory cell death termed pyroptosis via activation of inflammatory caspases. However, blockade of immune signaling kinases by the Yersinia virulence factor YopJ triggers cell death involving both apoptotic caspase-8 and pyroptotic caspase-1. While caspase-1 is normally activated within inflammasomes, Yersinia-induced caspase-1 activation is independent of known inflammasome components. We report that caspase-8 is an essential initiator, while caspase-1 is an essential amplifier of its own activation through two feed-forward loops involving caspase-1 auto-processing and caspase-1-dependent activation of gasdermin D and NLPR3. Notably, while Yersinia-induced caspase-1 activation and cell death are inflammasome-independent, IL-1ß release requires NLPR3 inflammasome activation. Mechanistically, caspase-8 is rapidly activated within multiple foci throughout the cell, followed by assembly of a canonical inflammasome speck, indicating that caspase-8 and canonical inflammasome complex assemblies are kinetically and spatially distinct. Our findings reveal that functionally interconnected but distinct death complexes mediate pyroptosis and IL-1ß release in response to pathogen blockade of immune signaling.


Assuntos
Caspase 1 , Caspase 8 , Inflamassomos , Interleucina-1beta , Proteínas de Ligação a Fosfato , Piroptose , Transdução de Sinais , Yersinia , Interleucina-1beta/metabolismo , Caspase 8/metabolismo , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Yersinia/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Camundongos , Humanos , Proteínas de Bactérias/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Yersiniose/imunologia , Yersiniose/microbiologia , Yersiniose/metabolismo , Gasderminas
2.
mBio ; 15(7): e0297523, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38837391

RESUMO

Caspases are a family of cysteine proteases that act as molecular scissors to cleave substrates and regulate biological processes such as programmed cell death and inflammation. Extensive efforts have been made to identify caspase substrates and to determine factors that dictate substrate specificity. Thousands of putative substrates have been identified for caspases that regulate an immunologically silent type of cell death known as apoptosis, but less is known about substrates of the inflammatory caspases that regulate an immunostimulatory type of cell death called pyroptosis. Furthermore, much of our understanding of caspase substrate specificities is derived from work done with peptide substrates, which do not often translate to native protein substrates. Our knowledge of inflammatory caspase biology and substrates has recently expanded and here, we discuss the recent advances in our understanding of caspase substrate specificities, with a focus on inflammatory caspases. We highlight new substrates that have been discovered and discuss the factors that engender specificity. Recent evidence suggests that inflammatory caspases likely utilize two binding interfaces to recognize and process substrates, the active site and a conserved exosite.


Assuntos
Caspases , Inflamação , Especificidade por Substrato , Caspases/metabolismo , Caspases/genética , Humanos , Inflamação/metabolismo , Animais , Domínio Catalítico , Piroptose
3.
Cells ; 13(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38391959

RESUMO

Cancer immunotherapy is a novel pillar of cancer treatment that harnesses the immune system to fight tumors and generally results in robust antitumor immunity. Although immunotherapy has achieved remarkable clinical success for some patients, many patients do not respond, underscoring the need to develop new strategies to promote antitumor immunity. Pyroptosis is an immunostimulatory type of regulated cell death that activates the innate immune system. A hallmark of pyroptosis is the release of intracellular contents such as cytokines, alarmins, and chemokines that can stimulate adaptive immune activation. Recent studies suggest that pyroptosis promotes antitumor immunity. Here, we review the mechanisms by which pyroptosis can be induced and highlight new strategies to induce pyroptosis in cancer cells for antitumor defense. We discuss how pyroptosis modulates the tumor microenvironment to stimulate adaptive immunity and promote antitumor immunity. We also suggest research areas to focus on for continued development of pyroptosis as an anticancer treatment. Pyroptosis-based anticancer therapies offer a promising new avenue for treating immunologically 'cold' tumors.


Assuntos
Neoplasias , Piroptose , Humanos , Imunoterapia , Imunização , Imunidade Adaptativa , Neoplasias/terapia , Microambiente Tumoral
4.
Cancer Immunol Res ; 11(9): 1253-1265, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379366

RESUMO

Genetically engineered, cytotoxic, adoptively transferred T cells localize to antigen-positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with a killing mechanism orthogonal to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Herein, we expanded the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with T-cell receptor (TCR)-engineered T cells. We demonstrate that SEAKER cells localized specifically to tumors, and activated bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells were efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.


Assuntos
Imunoterapia Adotiva , Melanoma , Camundongos , Animais , Humanos , Linfócitos T Citotóxicos , Engenharia Genética , Receptores de Antígenos de Linfócitos T/genética
5.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205431

RESUMO

Genetically engineered, cytotoxic, adoptive T cells localize to antigen positive cancer cells inside patients, but tumor heterogeneity and multiple immune escape mechanisms have prevented the eradication of most solid tumor types. More effective, multifunctional engineered T cells are in development to overcome the barriers to the treatment of solid tumors, but the interactions of these highly modified cells with the host are poorly understood. We previously engineered prodrug-activating enzymatic functions into chimeric antigen receptor (CAR) T cells, endowing them with an orthogonal killing mechanism to conventional T-cell cytotoxicity. These drug-delivering cells, termed Synthetic Enzyme-Armed KillER (SEAKER) cells, demonstrated efficacy in mouse lymphoma xenograft models. However, the interactions of an immunocompromised xenograft with such complex engineered T cells are distinct from those in an immunocompetent host, precluding an understanding of how these physiologic processes may affect the therapy. Here, we also expand the repertoire of SEAKER cells to target solid-tumor melanomas in syngeneic mouse models using specific targeting with TCR-engineered T cells. We demonstrate that SEAKER cells localize specifically to tumors, and activate bioactive prodrugs, despite host immune responses. We additionally show that TCR-engineered SEAKER cells are efficacious in immunocompetent hosts, demonstrating that the SEAKER platform is applicable to many adoptive cell therapies.

6.
Cancer Discov ; 13(2): 275-277, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744318

RESUMO

In the 2 years since the inception of Black in Cancer, we have modeled an action-oriented commitment to improving Black representation across all levels of the cancer spectrum. We reflect on our successes and consider new ways to innovate and inspire the cancer community.


Assuntos
Neoplasias , Humanos , Poder Psicológico
7.
Blood ; 141(16): 2003-2015, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36696633

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy has shown success in the treatment of hematopoietic malignancies; however, relapse remains a significant issue. To overcome this, we engineered "Orexi" CAR T cells to locally secrete a high-affinity CD47 blocker, CV1, at the tumor and treated tumors in combination with an orthogonally targeted monoclonal antibody. Traditional CAR T cells plus the antibody had an additive effect in xenograft models, and this effect was potentiated by CAR T-cell local CV1 secretion. Furthermore, OrexiCAR-secreted CV1 reversed the immunosuppression of myelomonocytoid cells both in vitro and within the tumor microenvironment. Local secretion of the CD47 inhibitor bypasses the CD47 sink found on all cells in the body and may prevent systemic toxicities. This combination of CAR T-cell therapy, local CD47 blockade, and orthogonal antibody may be a combinatorial strategy to overcome the limitations of each monotherapy.


Assuntos
Antígeno CD47 , Neoplasias , Humanos , Recidiva Local de Neoplasia , Neoplasias/patologia , Linfócitos T , Imunoterapia Adotiva , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Microambiente Tumoral
8.
Blood Adv ; 6(14): 4107-4121, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35561310

RESUMO

Exploring the repertoire of peptides presented on major histocompatibility complexes (MHCs) helps identify targets for immunotherapy in many hematologic malignancies. However, there is a paucity of such data for diffuse large B-cell lymphomas (DLBCLs), which might be explained by the profound downregulation of MHC expression in many DLBCLs, and in particular in the enhancer of zeste homolog 2 (EZH2)-mutated subgroup. Epigenetic drug treatment, especially in the context of interferon-γ (IFN-γ), restored MHC expression in DLBCL. In DLBCL, peptides presented on MHCs were identified via mass spectrometry after treatment with tazemetostat or decitabine alone or in combination with IFN-γ. Such treatment synergistically increased the expression of MHC class I surface proteins up to 50-fold and the expression of class II surface proteins up to threefold. Peptides presented on MHCs increased to a similar extent for both class I and class II MHCs. Overall, these treatments restored the diversity of the immunopeptidome to levels described in healthy B cells for 2 of 3 cell lines and allowed the systematic search for new targets for immunotherapy. Consequently, we identified multiple MHC ligands from the regulator of G protein signaling 13 (RGS13) and E2F transcription factor 8 (E2F8) on different MHC alleles, none of which have been described in healthy tissues and therefore represent tumor-specific MHC ligands that are unmasked only after drug treatment. Overall, our results show that EZH2 inhibition in combination with decitabine and IFN-γ can expand the repertoire of MHC ligands presented on DLBCLs by revealing suppressed epitopes, thus allowing the systematic analysis and identification of new potential immunotherapy targets.


Assuntos
Linfoma Difuso de Grandes Células B , Proteínas RGS , Decitabina/uso terapêutico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interferon gama , Ligantes , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Peptídeos/metabolismo
9.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35380993

RESUMO

PRAME is a prominent member of the cancer testis antigen family of proteins, which triggers autologous T cell-mediated immune responses. Integrative genomic analysis in diffuse large B cell lymphoma (DLBCL) uncovered recurrent and highly focal deletions of 22q11.22, including the PRAME gene, which were associated with poor outcome. PRAME-deleted tumors showed cytotoxic T cell immune escape and were associated with cold tumor microenvironments. In addition, PRAME downmodulation was strongly associated with somatic EZH2 Y641 mutations in DLBCL. In turn, PRC2-regulated genes were repressed in isogenic PRAME-KO lymphoma cell lines, and PRAME was found to directly interact with EZH2 as a negative regulator. EZH2 inhibition with EPZ-6438 abrogated these extrinsic and intrinsic effects, leading to PRAME expression and microenvironment restoration in vivo. Our data highlight multiple functions of PRAME during lymphomagenesis and provide a preclinical rationale for synergistic therapies combining epigenetic reprogramming with PRAME-targeted therapies.


Assuntos
Antígenos de Neoplasias , Linfoma Difuso de Grandes Células B , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/terapia , Microambiente Tumoral/genética
10.
Nat Chem Biol ; 18(2): 216-225, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34969970

RESUMO

Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.


Assuntos
Antineoplásicos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias Experimentais , Pró-Fármacos , Receptores de Antígenos Quiméricos , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Mol Ther ; 29(12): 3398-3409, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34217891

RESUMO

Cellular therapies are engineered using foreign and synthetic protein sequences, such as chimeric antigen receptors (CARs). The frequently observed humoral responses to CAR T cells result in rapid clearance, especially after re-infusions. There is an unmet need to protect engineered cells from host-versus-graft rejection, particularly for the advancement of allogeneic cell therapies. Here, utilizing the immunoglobulin G (IgG) protease "IdeS," we programmed CAR T cells to defeat humoral immune attacks. IdeS cleavage of host IgG averted Fc-dependent phagocytosis and lysis, and the residual F(ab')2 fragments remained on the surface, providing cells with an inert shield from additional IgG deposition. "Shield" CAR T cells efficiently cleaved cytotoxic IgG, including anti-CAR antibodies, detected in patient samples and provided effective anti-tumor activity in the presence of anti-cell IgG in vivo. This technology may be useful for repeated human infusions of engineered cells, more complex engineered cells, and expanding widespread use of "off-the-shelf" allogeneic cellular therapies.


Assuntos
Imunoglobulina G , Receptores de Antígenos Quiméricos , Humanos , Fagocitose , Receptores de Antígenos Quiméricos/metabolismo
12.
Oncoimmunology ; 10(1): 1916243, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34104540

RESUMO

Cyclin dependent kinase 4/6 inhibitors (CDK4/6i) lead to cell-cycle arrest but also trigger T cell-mediated immunity, which might be mediated by changes in human leukocyte antigen (HLA) ligands. We investigated the effects of CDK4/6i, abemaciclib and palbociclib, on the immunopeptidome at nontoxic levels in breast cancer cell lines by biochemical identification of HLA ligands followed by network analyses. This treatment led to upregulation of HLA and revealed hundreds of induced HLA ligands in breast cancer cell lines. These new ligands were significantly enriched for peptides derived from proteins involved in the "G1/S phase transition of cell cycle" including HLA ligands from CDK4/6, Cyclin D1 and the 26S regulatory proteasomal subunit 4 (PSMC1). Interestingly, peptides from proteins targeted by abemaciclib and palbociclib, were predicted to be the most likely to induce a T cell response. In strong contrast, peptides induced by solely one of the drugs had a lower T cell recognition score compared to the DMSO control suggesting that the observed effect is class dependent. This general hypothesis was exemplified by a peptide from PSMC1 which was among the HLA ligands with highest prediction scores and which elicited a T cell response in healthy donors. Overall, these data demonstrate that CDK4/6i treatment gives rise to drug-induced HLA ligands from G1/S phase transition, that have the highest chance for being recognized by T cells, thus providing evidence that inhibition of a distinct cellular process leads to increased presentation of the involved proteins that may be targeted by immunotherapeutic agents.


Assuntos
Quinase 6 Dependente de Ciclina , Neoplasias , Quinase 4 Dependente de Ciclina , Humanos , Imunoterapia , Ligantes , Inibidores de Proteínas Quinases
13.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764348

RESUMO

The recent emergence of engineered cellular therapies, such as Chimeric antigen receptor (CAR) CAR T and T cell receptor (TCR) engineered T cells, has shown great promise in the treatment of various cancers. These agents aggregate and expand exponentially at the tumor site, resulting in potent immune activation and tumor clearance. Moreover, the ability to elaborate these cells with therapeutic agents, such as antibodies, enzymes, and immunostimulatory molecules, presents an unprecedented opportunity to specifically modulate the tumor microenvironment through cell-mediated drug delivery. This unique pharmacology, combined with significant advances in synthetic biology and cell engineering, has established a new paradigm for cells as vectors for drug delivery. Targeted cellular micropharmacies (TCMs) are a revolutionary new class of living drugs, which we envision will play an important role in cancer medicine and beyond. Here, we review important advances and considerations underway in developing this promising advancement in biological therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA