Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Development ; 150(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870089

RESUMO

Macroheterogeneity in follicle-stimulating hormone (FSH) ß-subunit N-glycosylation results in distinct FSH glycoforms. Hypoglycosylated FSH21 is the abundant and more bioactive form in pituitaries of females under 35 years of age, whereas fully glycosylated FSH24 is less bioactive and increases with age. To investigate whether the shift in FSH glycoform abundance contributes to the age-dependent decline in oocyte quality, the direct effects of FSH glycoforms on folliculogenesis and oocyte quality were determined using an encapsulated in vitro mouse follicle growth system. Long-term culture (10-12 days) with FSH21 (10 ng/ml) enhanced follicle growth, estradiol secretion and oocyte quality compared with FSH24 (10 ng/ml) treatment. FSH21 enhanced establishment of transzonal projections, gap junctions and cell-to-cell communication within 24 h in culture. Transient inhibition of FSH21-mediated bidirectional communication abrogated the positive effects of FSH21 on follicle growth, estradiol secretion and oocyte quality. Our data indicate that FSH21 promotes folliculogenesis and oocyte quality in vitro by increasing cell-to-cell communication early in folliculogenesis, and that the shift in in vivo abundance from FSH21 to FSH24 with reproductive aging may contribute to the age-dependent decline in oocyte quality.


Assuntos
Hormônio Foliculoestimulante , Oócitos , Feminino , Camundongos , Animais , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/fisiologia , Folículo Ovariano , Comunicação Celular , Estradiol/farmacologia
2.
Hum Reprod ; 36(7): 1891-1906, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34059912

RESUMO

STUDY QUESTION: Does hypo-glycosylated human recombinant FSH (hFSH18/21) have greater in vivo bioactivity that drives follicle development in vivo compared to fully-glycosylated human recombinant FSH (hFSH24)? SUMMARY ANSWER: Compared with fully-glycosylated hFSH, hypo-glycosylated hFSH has greater bioactivity, enabling greater follicular health and growth in vivo, with enhanced transcriptional activity, greater activation of receptor tyrosine kinases (RTKs) and elevated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) signaling. WHAT IS KNOWN ALREADY: Glycosylation of FSH is necessary for FSH to effectively activate the FSH receptor (FSHR) and promote preantral follicular growth and formation of antral follicles. In vitro studies demonstrate that compared to fully-glycosylated recombinant human FSH, hypo-glycosylated FSH has greater activity in receptor binding studies, and more effectively stimulates the PKA pathway and steroidogenesis in human granulosa cells. STUDY DESIGN, SIZE, DURATION: This is a cross-sectional study evaluating the actions of purified recombinant human FSH glycoforms on parameters of follicular development, gene expression and cell signaling in immature postnatal day (PND) 17 female CD-1 mice. To stimulate follicle development in vivo, PND 17 female CD-1 mice (n = 8-10/group) were treated with PBS (150 µl), hFSH18/21 (1 µg/150 µl PBS) or hFSH24 (1 µg/150 µl PBS) by intraperitoneal injection (i.p.) twice daily (8:00 a.m. and 6:00 p.m.) for 2 days. Follicle numbers, serum anti-Müllerian hormone (AMH) and estradiol levels, and follicle health were quantified. PND 17 female CD-1 mice were also treated acutely (2 h) in vivo with PBS, hFSH18/21 (1 µg) or hFSH24 (1 µg) (n = 3-4/group). One ovary from each mouse was processed for RNA sequencing analysis and the other ovary processed for signal transduction analysis. An in vitro ovary culture system was used to confirm the relative signaling pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS: The purity of different recombinant hFSH glycoforms was analyzed using an automated western blot system. Follicle numbers were determined by counting serial sections of the mouse ovary. Real-time quantitative RT-PCR, western blot and immunofluorescence staining were used to determine growth and apoptosis markers related with follicle health. RNA sequencing and bioinformatics were used to identify pathways and processes associated with gene expression profiles induced by acute FSH glycoform treatment. Analysis of RTKs was used to determine potential FSH downstream signaling pathways in vivo. Western blot and in vitro ovarian culture system were used to validate the relative signaling pathways. MAIN RESULTS AND THE ROLE OF CHANCE: Our present study shows that both hypo- and fully-glycosylated recombinant human FSH can drive follicular growth in vivo. However, hFSH18/21 promoted development of significantly more large antral follicles compared to hFSH24 (P < 0.01). In addition, compared with hFSH24, hFSH18/21 also promoted greater indices of follicular health, as defined by lower BAX/BCL2 ratios and reduced cleaved Caspase 3. Following acute in vivo treatment with FSH glycoforms RNA-sequencing data revealed that both FSH glycoforms rapidly induced ovarian transcription in vivo, but hypo-glycosylated FSH more robustly stimulated Gαs and cAMP-mediated signaling and members of the AP-1 transcription factor complex. Moreover, hFSH18/21 treatment induced significantly greater activation of RTKs, PI3K/AKT and MAPK/ERK signaling compared to hFSH24. FSH-induced indices of follicle growth in vitro were blocked by inhibition of PI3K and MAPK. LARGE SCALE DATA: RNA sequencing of mouse ovaries. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION: The observations that hFSH glycoforms have different bioactivities in the present study employing a mouse model of follicle development should be verified in nonhuman primates. The gene expression studies reflect transcriptomes of whole ovaries. WIDER IMPLICATIONS OF THE FINDINGS: Commercially prepared recombinant human FSH used for ovarian stimulation in human ART is fully-glycosylated FSH. Our findings that hypo-glycosylated hFSH has greater bioactivity enabling greater follicular health and growth without exaggerated estradiol production in vivo, demonstrate the potential for its development for application in human ART. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by NIH 1P01 AG029531, NIH 1R01 HD 092263, VA I01 BX004272, and the Olson Center for Women's Health. JSD is the recipient of a VA Senior Research Career Scientist Award (1IK6 BX005797). This work was also partially supported by National Natural Science Foundation of China (No. 31872352). The authors declared there are no conflicts of interest.


Assuntos
Hormônio Foliculoestimulante Humano , Proteínas Quinases Ativadas por Mitógeno , Folículo Ovariano/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Animais , China , Estudos Transversais , Feminino , Glicosilação , Camundongos , Proteínas Recombinantes
3.
Mol Cell Endocrinol ; 514: 110911, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32553947

RESUMO

Previous studies have reported hypo-glycosylated FSH and fully-glycosylated FSH to be naturally occurring in humans, and these glycoforms exist in changing ratios over a woman's lifespan. The precise cellular and molecular effects of recombinant human FSH (hFSH) glycoforms, FSH21 and FSH24, have not been documented in primary granulosa cells. Herein, biological responses to FSH21 and FSH24 were compared in primary porcine granulosa cells. Hypo-glycosylated hFSH21 was significantly more effective than fully-glycosylated hFSH24 at stimulating cAMP accumulation and protein kinase A (PKA) activity, leading to the higher phosphorylation of CREB and ß-Catenin. Compared to fully-glycosylated hFSH24, hypo-glycosylated hFSH21 also induced greater levels of transcripts for HSD3B, STAR and INHA, and higher progesterone production. Our results demonstrate that hypo-glycosylated hFSH21 exerts more robust activation of intracellular signals associated with steroidogenesis than fully-glycosylated hFSH24 in primary porcine granulosa cells, and furthers our understanding of the differing bioactivities of FSH glycoforms in the ovary.


Assuntos
Hormônio Foliculoestimulante Humano/farmacologia , Células da Granulosa/efeitos dos fármacos , Animais , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante Humano/química , Hormônio Foliculoestimulante Humano/metabolismo , Glicosilação , Células da Granulosa/citologia , Células da Granulosa/fisiologia , Ovário/efeitos dos fármacos , Ovário/metabolismo , Cultura Primária de Células/veterinária , Progesterona/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Suínos , beta Catenina/metabolismo
4.
Reproduction ; 158(6): 517-527, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600726

RESUMO

Female reproductive aging is characterized by a rise in follicle-stimulating hormone (FSH) levels during peri-menopause. N-linked glycans are co-translationally attached to the Asn7 and Asn24 residues on the FSHß subunit. Differences in the number of N-glycans on the FSHß subunit result in distinct glycoforms: hypo-glycosylated (FSH21/18, glycans absent on either Asn24 or Asn7, respectively) or fully-glycosylated (FSH24, glycans present on both Asn7 and Asn24). The relative abundance of FSH glycoforms changes with advanced reproductive age, shifting from predominantly FSH21/18 in younger women to FSH24 in older women. Previous in vitro studies in granulosa cell lines and in vivo studies using Fshb-null mice showed these glycoforms elicit differential bioactivities. However, the direct effects of FSH glycoforms on the mouse ovarian follicle have not yet been determined. In this study, we isolated secondary follicles from pre-pubertal mice and treated them with 20- or 100 ng/mL purified recombinant FSH glycoforms for 1 h or 18-20 h. Analysis of phosphorylated PKA substrates showed that glycoforms were bioactive in follicles following 1-h treatment, although differential bioactivity was only observed with the 100 ng/mL dose. Treatment of follicles with 100 ng/mL of each glycoform also induced distinct expression patterns of FSH-responsive genes as assessed by qPCR, consistent with differential function. Our results, therefore, indicate that FSH glycoforms are bioactive in isolated murine follicles.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Feminino , Hormônio Foliculoestimulante/genética , Glicosilação , Células da Granulosa/citologia , Camundongos , Folículo Ovariano/citologia , Fosforilação
5.
Endocrinology ; 160(6): 1515-1535, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127275

RESUMO

FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHß subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHß glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Adeno-Hipófise/metabolismo , Animais , Glicômica , Glicosilação , Humanos , Receptores do FSH/metabolismo
6.
Mol Cell Endocrinol ; 437: 224-236, 2016 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-27561202

RESUMO

The hormone - specific FSHß subunit of the human FSH heterodimer consists of N-linked glycans at Asn7 and Asn24 residues that are co-translationally attached early during subunit biosynthesis. Differences in the number of N-glycans (none, one or two) on the human FSHß subunit contribute to macroheterogeneity in the FSH heterodimer. The resulting FSH glycoforms are termed hypo-glycosylated (FSH21/18, missing either an Asn24 or Asn7 N-glycan chain on the ß - subunit, respectively) or fully glycosylated (FSH24, possessing of both Asn7 and Asn24 N-linked glycans on the ß - subunit) FSH. The recombinant versions of human FSH glycoforms (FSH21/18 and FSH24) have been purified and biochemically characterized. In vitro functional studies have indicated that FSH21/18 exhibits faster FSH- receptor binding kinetics and is much more active than FSH24 in every assay tested to date. However, the in vivo bioactivity of the hypo-glycosylated FSH glycoform has never been tested. Here, we evaluated the in vivo bioactivities of FSH glycoforms in Fshb null mice using a pharmacological rescue approach. In Fshb null female mice, both hypo- and fully-glycosylated FSH elicited an ovarian weight gain response by 48 h and induced ovarian genes in a dose- and time-dependent manner. Quantification by real time qPCR assays indicated that hypo-glycosylated FSH21/18 was bioactive in vivo and induced FSH-responsive ovarian genes similar to fully-glycosylated FSH24. Western blot analyses followed by densitometry of key signaling components downstream of the FSH-receptor confirmed that the hypo-glycosylated FSH21/18 elicited a response similar to that by fully-glycosylated FSH24 in ovaries of Fshb null mice. When injected into Fshb null males, hypo-glycosylated FSH21/18 was more active than the fully-glycosylated FSH24 in inducing FSH-responsive genes and Sertoli cell proliferation. Thus, our data establish that recombinant hypo-glycosylated human FSH21/18 glycoform elicits bioactivity in vivo similar to the fully-glycosylated FSH. Our studies may have clinical implications particularly in formulating FSH-based ovarian follicle induction protocols using a combination of different human FSH glycoforms.


Assuntos
Hormônio Foliculoestimulante Humano/farmacologia , Subunidade beta do Hormônio Folículoestimulante/deficiência , Proteínas Recombinantes/farmacologia , Animais , Western Blotting , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Hormônio Foliculoestimulante Humano/química , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação , Humanos , Masculino , Camundongos Knockout , Ovário/efeitos dos fármacos , Ovário/metabolismo , Fosforilação/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo
7.
Mol Cell Endocrinol ; 426: 113-24, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26911932

RESUMO

Follicle-stimulating hormone (FSH) is a gonadotrope-derived heterodimeric glycoprotein. Both the common α- and hormone-specific ß subunits contain Asn-linked N-glycan chains. Recently, macroheterogeneous FSH glycoforms consisting of ß-subunits that differ in N-glycan number were identified in pituitaries of several species and subsequently the recombinant human FSH glycoforms biochemically characterized. Although chemical modification and in vitro site-directed mutagenesis studies defined the roles of N-glycans on gonadotropin subunits, in vivo functional analyses in a whole-animal setting are lacking. Here, we have generated transgenic mice with gonadotrope-specific expression of either an HFSHB(WT) transgene that encodes human FSHß WT subunit or an HFSHB(dgc) transgene that encodes a human FSHß(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, and separately introduced these transgenes onto Fshb null background using a genetic rescue strategy. We demonstrate that the human FSHß(Asn7Δ 24Δ) double N-glycosylation site mutant subunit, unlike human FSHß WT subunit, inefficiently combines with the mouse α-subunit in pituitaries of Fshb null mice. FSH dimer containing this mutant FSHß subunit is inefficiently secreted with very low levels detectable in serum. Fshb null male mice expressing HFSHB(dgc) transgene are fertile and exhibit testis tubule size and sperm number similar to those of Fshb null mice. Fshb null female mice expressing the mutant, but not WT human FSHß subunit-containing FSH dimer are infertile, demonstrate no evidence of estrus cycles, and many of the FSH-responsive genes remain suppressed in their ovaries. Thus, HFSHB(dgc) unlike HFSHB(WT) transgene does not rescue Fshb null mice. Our genetic approach provides direct in vivo evidence that N-linked glycans on FSHß subunit are essential for its efficient assembly with the α-subunit to form FSH heterodimer in pituitary. Our studies also reveal that N-glycans on FSHß subunit are essential for FSH secretion and FSH in vivo bioactivity to regulate gonadal growth and physiology.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/genética , Processamento de Proteína Pós-Traducional , Animais , Feminino , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Glicosilação , Masculino , Camundongos Knockout , Ovário/anormalidades , Ovário/patologia , Testículo/anormalidades , Testículo/patologia , Transgenes
8.
J Clin Endocrinol Metab ; 100(6): E852-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915568

RESUMO

CONTEXT: Previous studies suggest that aging in women is associated with a reduction in hypoglycosylated forms of FSH. OBJECTIVE: Experiments were performed to determine whether glycosylation of the FSHß subunit modulates the biological activity of FSH in human granulosa cells. DESIGN AND SETTING: Recombinant human FSH (hFSH) derived from GH3 pituitary cells was purified into fractions containing hypoglycosylated hFSH(21/18) and fully glycosylated hFSH(24). The response to FSH glycoforms was evaluated using the well-characterized, FSH-responsive human granulosa cell line, KGN at an academic medical center. INTERVENTIONS: Granulosa cells were treated with increasing concentrations of fully- or hypoglycosylated FSH glycoforms for periods up to 48 hours. MAIN OUTCOME MEASURE(S): The main outcomes were indices of cAMP-dependent cell signaling and estrogen and progesterone synthesis. RESULTS: We observed that hypoglycosylated FSH(21/18) was significantly more effective than fully glycosylated FSH(24) at stimulating cAMP accumulation, protein kinase A (PKA) activity, and cAMP response element binding protein (CREB) (S133) phosphorylation. FSH(21/18) was also much more effective than hFSH(24) on the stimulation CREB-response element-mediated transcription, expression of aromatase and STAR proteins, and synthesis of estrogen and progesterone. Adenoviral-mediated expression of the endogenous inhibitor of PKA, inhibited FSH(21/18)- and FSH(24)-stimulated CREB phosphorylation, and steroidogenesis. CONCLUSIONS: Hypoglycosylated FSH(21/18) has greater bioactivity than fully glycosylated hFSH(24), suggesting that age-dependent decreases in hypoglycosylated hFSH contribute to reduced ovarian responsiveness. Hypoglycosylated FSH may be useful in follicle stimulation protocols for older patients using assisted reproduction technologies.


Assuntos
Hormônio Foliculoestimulante Humano/metabolismo , Hormônio Foliculoestimulante Humano/farmacologia , Células da Granulosa/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sequência de Carboidratos , Células Cultivadas , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Glicosilação , Células da Granulosa/metabolismo , Humanos , Fosforilação , Isoformas de Proteínas
9.
Theriogenology ; 83(9): 1469-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796287

RESUMO

The pituitary LHß and placental CGß subunits are products of different genes in primates. The major structural difference between the two subunits is in the carboxy-terminal region, where the short carboxyl sequence of hLHß is replaced by a longer O-glycosylated carboxy-terminal peptide in hCGß. In association with this structural deviation, there are marked differences in the secretion kinetics and polarized routing of the two subunits. In equids, however, the CGß and LHß subunits are products of the same gene expressed in the placenta and pituitary (LHß), and both contain a carboxy-terminal peptide. This unusual expression pattern intrigued us and led to our study of eLHß subunit secretion by transfected Chinese hamster ovary and Madin-Darby canine kidney cells. In continuous labeling and pulse-chase experiments, the secretion of the eLHß subunit from the transfected Chinese hamster ovary cells was inefficient (medium recovery of 16%-25%) and slow (t1/2 > 6.5 hours). This indicated that, the secretion of the eLHß subunit resembles that of hLHß rather than hCGß. In Madin-Darby canine kidney cells grown on Transwell filters, the eLHß subunit was preferentially secreted from the apical side, similar to the hCGß subunit secretory route (∼65% of the total protein secreted). Taken together, these data suggested that secretion of the eLHß subunit integrates features of both hLHß and hCGß subunits. We propose that the evolution of this intracellular behavior may fulfill the physiological demands for biosynthesis of the LH and CG ß-subunits in the pituitary and placenta, respectively.


Assuntos
Gonadotropina Coriônica Humana Subunidade beta/fisiologia , Cavalos/genética , Hormônio Luteinizante/fisiologia , Subunidades Proteicas/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Gonadotropina Coriônica Humana Subunidade beta/química , Gonadotropina Coriônica Humana Subunidade beta/genética , Cricetinae , Cricetulus , Cães , Evolução Molecular , Feminino , Humanos , Hormônio Luteinizante/química , Hormônio Luteinizante/genética , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência
10.
Mol Cell Endocrinol ; 405: 42-51, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25661536

RESUMO

Previously, our laboratory demonstrated the existence of a ß-subunit glycosylation-deficient human FSH glycoform, hFSH(21). A third variant, hFSH(18), has recently been detected in FSH glycoforms isolated from purified pituitary hLH preparations. Human FSH(21) abundance in individual female pituitaries progressively decreased with increasing age. Hypo-glycosylated glycoform preparations are significantly more active than fully-glycosylated hFSH preparations. The purpose of this study was to produce, purify and chemically characterize both glycoform variants expressed by a mammalian cell line. Recombinant hFSH was expressed in a stable GH3 cell line and isolated from serum-free cell culture medium by sequential, hydrophobic and immunoaffinity chromatography. FSH glycoform fractions were separated by Superdex 75 gel-filtration. Western blot analysis revealed the presence of both hFSH(18) and hFSH(21) glycoforms in the low molecular weight fraction, however, their electrophoretic mobilities differed from those associated with the corresponding pituitary hFSH variants. Edman degradation of FSH(21/18)-derived ß-subunit before and after peptide-N-glycanase F digestion confirmed that it possessed a mixture of both mono-glycosylated FSHß subunits, as both Asn(7) and Asn(24) were partially glycosylated. FSH receptor-binding assays confirmed our previous observations that hFSH(21/18) exhibits greater receptor-binding affinity and occupies more FSH binding sites when compared to fully-glycosylated hFSH(24). Thus, the age-related reduction in hypo-glycosylated hFSH significantly reduces circulating levels of FSH biological activity that may further compromise reproductive function. Taken together, the ability to express and isolate recombinant hFSH glycoforms opens the way to study functional differences between them both in vivo and in vitro.


Assuntos
Hormônio Foliculoestimulante/fisiologia , Animais , Células CHO , Configuração de Carboidratos , Sequência de Carboidratos , Bovinos , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Hormônio Foliculoestimulante/química , Hormônio Foliculoestimulante/isolamento & purificação , Glicosilação , Humanos , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/fisiologia , Processamento de Proteína Pós-Traducional , Ratos , Receptores do FSH/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Análise de Sequência de Proteína
11.
Mol Cell Endocrinol ; 382(2): 989-97, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24291635

RESUMO

Hypo-glycosylated hFSH(21/18) (possesses FSHß(21) and FSHß(18)bands) was isolated from hLH preparations by immunoaffinity chromatography followed by gel filtration. Fully-glycosylated hFSH(24) was prepared by combining the fully-glycosylated FSHß(24) variant with hCGα and isolating the heterodimer. The hFSH(21/18) glycoform preparation was significantly smaller than the hFSH(24) preparation and possessed 60% oligomannose glycans, which is unusual for hFSH. Hypo-glycosylated hFSH(21/18) was 9- to 26-fold more active than fully-glycosylated hFSH(24) in FSH radioligand assays. Significantly greater binding of (125)I-hFSH(21/18) tracer than hFSH(24) tracer was observed in all competitive binding assays. In addition, higher binding of hFSH(21/18) was noted in association and saturation binding assays, in which twice as much hFSH(21/18) was bound as hFSH(24). This suggests that more ligand binding sites are available to hFSH(21/18) in FSHR than to hFSH(24). Hypo-glycosylated hFSH(21/18) also bound rat FSHRs more rapidly, exhibiting almost no lag in binding, whereas hFSH(24) specific binding proceeded very slowly for almost the first hour of incubation.


Assuntos
Hormônio Foliculoestimulante Humano/química , Subunidade alfa de Hormônios Glicoproteicos/química , Hormônio Luteinizante/química , Manose/química , Receptores do FSH/química , Animais , Sítios de Ligação , Ligação Competitiva , Cromatografia de Afinidade , Cromatografia em Gel , Hormônio Foliculoestimulante Humano/isolamento & purificação , Hormônio Foliculoestimulante Humano/metabolismo , Subunidade alfa de Hormônios Glicoproteicos/metabolismo , Glicosilação , Humanos , Radioisótopos do Iodo , Hormônio Luteinizante/metabolismo , Manose/metabolismo , Ligação Proteica , Multimerização Proteica , Ensaio Radioligante , Ratos , Receptores do FSH/metabolismo , Análise de Sequência de Proteína
12.
Mol Endocrinol ; 24(3): 561-73, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20107152

RESUMO

Deglycosylated FSH is known to trigger poor Galphas coupling while efficiently binding its receptor. In the present study, we tested the possibility that a deglycosylated equine LH (eLHdg) might be able to selectively activate beta-arrestin-dependent signaling. We compared native eLH to an eLH derivative [i.e. truncated eLHbeta (Delta121-149) combined with asparagine56-deglycosylated eLHalpha (eLHdg)] previously reported as an antagonist of cAMP accumulation at the FSH receptor (FSH-R). We confirmed that, when used in conjunction with FSH, eLHdg acted as an antagonist for cAMP accumulation in HEK-293 cells stably expressing the FSH-R. Furthermore, when used alone at concentrations up to 1 nM, eLHdg had no detectable agonistic activity on cAMP accumulation, protein kinase A activity or cAMP-responsive element-dependent transcriptional activity. At higher concentrations, however, a weak agonistic action was observed with eLHdg, whereas eLH led to robust responses whatever the concentration. Both eLH and eLHdg triggered receptor internalization and led to beta-arrestin recruitment. Both eLH and eLHdg triggered ERK and ribosomal protein (rp) S6 phosphorylation at 1 nM. The depletion of endogenous beta-arrestins had only a partial effect on eLH-induced ERK and rpS6 phosphorylation. In contrast, ERK and rpS6 phosphorylation was completely abolished at all time points in beta-arrestin-depleted cells. Together, these results show that eLHdg has the ability to preferentially activate beta-arrestin-dependent signaling at the FSH-R. This finding provides a new conceptual and experimental framework to revisit the physiological meaning of gonadotropin structural heterogeneity. Importantly, it also opens a field of possibilities for the development of selective modulators of gonadotropin receptors.


Assuntos
Arrestinas/metabolismo , Hormônio Luteinizante/análogos & derivados , Receptores do FSH/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Western Blotting , Bovinos , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Cavalos , Humanos , Imunoprecipitação , Hormônio Luteinizante/química , Hormônio Luteinizante/metabolismo , Hormônio Luteinizante/farmacologia , Camundongos , Fosforilação/efeitos dos fármacos , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno , Receptores do FSH/agonistas , Receptores do FSH/antagonistas & inibidores , Proteína S6 Ribossômica/metabolismo , Suínos , beta-Arrestinas
13.
Mol Cell Endocrinol ; 260-262: 40-8, 2007 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-17079072

RESUMO

Human FSH exists as two major glycoforms designated, tetra-glycosylated and di-glycosylated hFSH. The former possesses both alpha- and beta-subunit carbohydrates while the latter possesses only alpha-subunit carbohydrate. Western blotting differentiated the glycosylated, 24,000 M(r) hFSHbeta band from the non-glycosylated 21,000 M(r) FSHbeta band. Postmenopausal urinary hFSH preparations possessed 75-95% 24,000 M(r) hFSHbeta, while pituitary hFSH immunopurified from 21- to 43-year-old females and 21-43-year-old males possessed only 35-40% 24,000 M(r) hFSHbeta. The pituitary hFSH from a postmenopausal woman on estrogen replacement was 75% 21,000 M(r) hFSHbeta. Other immunopurified postmenopausal pituitary hFSH preparations possessed 50-60% 21,000 M(r) hFSHbeta. Gel filtration removed predominantly 21,000 M(r) free hFSHbeta and reduced its abundance to 13-22% in postmenopausal pituitary hFSH heterodimer preparations. A major regulatory mechanism for FSH glycosylation involves control of beta-subunit N-glycosylation, possibly by inhibition of oligosaccharyl transferase. Two primate species exhibited the same all-or-none pattern of pituitary FSHbeta glycosylation.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/química , Subunidade beta do Hormônio Folículoestimulante/metabolismo , Macaca/metabolismo , Adulto , Idoso , Animais , Western Blotting , Cromatografia em Gel , Feminino , Subunidade beta do Hormônio Folículoestimulante/análise , Glicosilação , Humanos , Compostos Organofosforados/metabolismo , Ovário/cirurgia , Hipófise/química , Isoformas de Proteínas/análise , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Biochemistry ; 45(28): 8665-73, 2006 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-16834341

RESUMO

Follicle stimulating hormone (FSH) is one of the important hormones that regulate gonadal functions. This hormone is glycosylated, and the glycans greatly influence the biological properties. In the present study the negatively charged glycopeptides of equine and human pituitary follicle stimulating hormone (eFSH and hFSH) have been characterized in a glycosylation site-specific manner using FT-ICR-MS and Edman sequencing. The characteristic pattern of glycan distribution at each glycosylation site has been deduced and compared between horse and human FSH preparations. The data suggest that site-specific differences exist between glycoforms of human and equine FSH. For instance, except for one site in the beta subunit (Asn7) of hFSH all other sites in both species have sulfated glycoforms. Also, glycoforms at Asn52 of hFSH are all complex type, whereas in eFSH, both complex and hybrid structures exist at this site. There is also a higher percentage of sulfated glycans in the latter site compared to the former. This is the first study that characterizes the glycans from this hormone in a glycosylation site-specific manner, and these data can be used to begin correlative studies between glycosylation structure and hormone function.


Assuntos
Subunidade beta do Hormônio Folículoestimulante/química , Hormônio Foliculoestimulante/química , Subunidade alfa de Hormônios Glicoproteicos/química , Sequência de Aminoácidos , Animais , Análise de Fourier , Glicopeptídeos/química , Glicoproteínas/química , Glicosilação , Cavalos , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Polissacarídeos/análise
15.
Biochemistry ; 43(33): 10817-33, 2004 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-15311943

RESUMO

The gonadotropins, luteinizing hormone (LH), follicle-stimulating hormone (FSH), and chorionic gonadotropin (CG), are cysteine-knot growth-factor superfamily glycoproteins composed of a common alpha subunit noncovalently associated with a hormone-specific beta subunit. The cysteine-knot motifs in both subunits create two hairpin loops, designated L1 and L3, on one side of the knot, with the intervening long loop, L2, on the opposite side. As the average alpha-subunit loop 2 oligosaccharide mass increased from 1482 to 2327, LH and FSH receptor-binding affinities of the dual-specificity eLH declined significantly, while the decrease in FSH receptor-binding affinity for eFSH was not significant. In the present study, we characterized hormone-specific glycosylation of alphaL2 oligosaccharides in eLHalpha, eFSHalpha, and eCGalpha preparations. MALDI mass spectrometry revealed 28-57 structures, including high mannose, hybrid, bi-, and triantennary oligosaccharides. The same intact subunit preparations and their alphaL2 loop-deglycosylated derivatives were combined with either eLHbeta or eFSHbeta, and the circular dichroism (CD) spectrum for each preparation was determined. We predicted that hybrid hormone preparations obtained by combining intact eLHalpha, eFSHalpha, and eCGalpha preparations with eLHbeta might exhibit differences in conformation that would disappear when the alphaL2 oligosaccharide attached to alphaAsn(56) was removed by selective peptide-N-glycanase digestion (N(56)dg-alpha). CD data supported the first prediction; however, elimination of alphaL2 oligosaccharide actually increased the conformational differences. The intact alpha subunit:eFSHbeta hybrids had virtually identical CD spectra, as expected. However, the N(56)dg-alpha:eFSHbeta hybrid spectra differed from each other. Oligosaccharide removal altered the conformation of most hybrids, suggesting that alphaAsn(82) oligosaccharide (located in alphaL3) also influenced gonadotropin conformation.


Assuntos
Hormônio Foliculoestimulante/química , Gonadotropinas Equinas/química , Hormônio Luteinizante/química , Oligossacarídeos/química , Animais , Sequência de Carboidratos , Gonadotropina Coriônica , Hormônio Foliculoestimulante/metabolismo , Glicopeptídeos/química , Cavalos , Hormônio Luteinizante/metabolismo , Oligossacarídeos/análise , Oligossacarídeos/farmacologia , Estrutura Secundária de Proteína , Subunidades Proteicas , Receptores do FSH/metabolismo , Receptores do LH/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA