Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Endocrinol Metab ; 321(6): E753-E765, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34747201

RESUMO

Cardiac muscle uses multiple sources of energy including glucose and fatty acid (FA). The heart cannot synthesize FA and relies on obtaining it from other sources, with lipoprotein lipase (LPL) breakdown of lipoproteins suggested to be a key source of FA for cardiac use. Recent work has indicated that cardiac vascular endothelial growth factor B (VEGFB) overexpression expands the coronary vasculature and facilitates metabolic reprogramming that favors glucose utilization. We wanted to explore whether this influence of VEGFB on cardiac metabolism involves regulation of LPL activity with consequent effects on lipotoxicity and insulin signaling. The transcriptomes of rats with and without cardiomyocyte-specific overexpression of human VEGFB were compared by using RNA sequencing. Isolated perfused hearts or cardiomyocytes incubated with heparin were used to enable measurement of LPL activity. Untargeted metabolomic analysis was performed for quantification of cardiac lipid metabolites. Cardiac insulin sensitivity was evaluated using fast-acting insulin. Isolated heart and cardiomyocytes were used to determine transgene-encoded VEGFB isoform secretion patterns and mitochondrial oxidative capacity using high-resolution respirometry and extracellular flux analysis. In vitro, transgenic cardiomyocytes incubated overnight and thus exposed to abundantly secreted VEGFB isoforms, in the absence of any in vivo confounding regulators of cardiac metabolism, demonstrated higher basal oxygen consumption. In the whole heart, VEGFB overexpression induced an angiogenic response that was accompanied by limited cardiac LPL activity through multiple mechanisms. This was associated with a lowered accumulation of lipid intermediates, diacylglycerols and lysophosphatidylcholine, that are known to influence insulin action. In response to exogenous insulin, transgenic hearts demonstrated increased insulin sensitivity. In conclusion, the interrogation of VEGFB function on cardiac metabolism uncovered an intriguing and previously unappreciated effect to lower LPL activity and prevent lipid metabolite accumulation to improve insulin action. VEGFB could be a potential cardioprotective therapy to treat metabolic disorders, for example, diabetes.NEW & NOTEWORTHY In hearts overexpressing vascular endothelial growth factor B (VEGFB), besides its known angiogenic response, multiple regulatory mechanisms lowered coronary LPL. This was accompanied by limited cardiac lipid metabolite accumulation with an augmentation of cardiac insulin action. Our data for the first time links VEGFB to coronary LPL in regulation of cardiac metabolism. VEGFB may be cardioprotective in metabolic disorders like diabetes.


Assuntos
Resistência à Insulina/genética , Lipase Lipoproteica/metabolismo , Miocárdio/metabolismo , Fator B de Crescimento do Endotélio Vascular/genética , Animais , Células Cultivadas , Ativação Enzimática/genética , Feminino , Coração/fisiologia , Insulina/metabolismo , Masculino , Especificidade de Órgãos/genética , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Regulação para Cima/genética , Fator B de Crescimento do Endotélio Vascular/metabolismo
2.
Scand J Med Sci Sports ; 31(12): 2249-2258, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34551157

RESUMO

The study aimed to determine the levels of skeletal muscle angiotensin-converting enzyme 2 (ACE2, the SARS-CoV-2 receptor) protein expression in men and women and assess whether ACE2 expression in skeletal muscle is associated with cardiorespiratory fitness and adiposity. The level of ACE2 in vastus lateralis muscle biopsies collected in previous studies from 170 men (age: 19-65 years, weight: 56-137 kg, BMI: 23-44) and 69 women (age: 18-55 years, weight: 41-126 kg, BMI: 22-39) was analyzed in duplicate by western blot. VO2 max was determined by ergospirometry and body composition by DXA. ACE2 protein expression was 1.8-fold higher in women than men (p = 0.001, n = 239). This sex difference disappeared after accounting for the percentage of body fat (fat %), VO2 max per kg of legs lean mass (VO2 max-LLM) and age (p = 0.47). Multiple regression analysis showed that the fat % (ß = 0.47) is the main predictor of the variability in ACE2 protein expression in skeletal muscle, explaining 5.2% of the variance. VO2 max-LLM had also predictive value (ß = 0.09). There was a significant fat % by VO2 max-LLM interaction, such that for subjects with low fat %, VO2 max-LLM was positively associated with ACE2 expression while as fat % increased the slope of the positive association between VO2 max-LLM and ACE2 was reduced. In conclusion, women express higher amounts of ACE2 in their skeletal muscles than men. This sexual dimorphism is mainly explained by sex differences in fat % and cardiorespiratory fitness. The percentage of body fat is the main predictor of the variability in ACE2 protein expression in human skeletal muscle.


Assuntos
Adiposidade , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Aptidão Cardiorrespiratória , Exercício Físico , Músculo Esquelético/metabolismo , Adolescente , Adulto , Enzima de Conversão de Angiotensina 2/genética , Biópsia , COVID-19/complicações , COVID-19/epidemiologia , Estudos Transversais , Metabolismo Energético , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2 , Fatores Sexuais , Adulto Jovem
3.
Front Physiol ; 9: 1133, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174617

RESUMO

Sexual dimorphism is apparent in humans, however, to date no studies have investigated mitochondrial function focusing on intrinsic mitochondrial respiration (i.e., mitochondrial respiration for a given amount of mitochondrial protein) and mitochondrial oxygen affinity (p50mito) in relation to biological sex in human. A skeletal muscle biopsy was donated by nine active women, and ten men matched for maximal oxygen consumption (VO2max) and by nine endurance trained men. Intrinsic mitochondrial respiration, assessed in isolated mitochondria, was higher in women compared to men when activating complex I (CIP) and complex I+II (CI+IIP) (p < 0.05), and was similar to trained men (CIP, p = 0.053; CI+IIP, p = 0.066). Proton leak and p50mito were higher in women compared to men independent of VO2max. In conclusion, significant novel differences in mitochondrial oxidative function, intrinsic mitochondrial respiration and p50mito exist between women and men. These findings may represent an adaptation in the oxygen cascade in women to optimize muscle oxygen uptake to compensate for a lower oxygen delivery during exercise.

4.
FASEB J ; 30(1): 417-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26452378

RESUMO

Intense exercise training is a powerful stimulus that activates mitochondrial biogenesis pathways and thus increases mitochondrial density and oxidative capacity. Moderate levels of reactive oxygen species (ROS) during exercise are considered vital in the adaptive response, but high ROS production is a serious threat to cellular homeostasis. Although biochemical markers of the transition from adaptive to maladaptive ROS stress are lacking, it is likely mediated by redox sensitive enzymes involved in oxidative metabolism. One potential enzyme mediating such redox sensitivity is the citric acid cycle enzyme aconitase. In this study, we examined biopsy specimens of vastus lateralis and triceps brachii in healthy volunteers, together with primary human myotubes. An intense exercise regimen inactivated aconitase by 55-72%, resulting in inhibition of mitochondrial respiration by 50-65%. In the vastus, the mitochondrial dysfunction was compensated for by a 15-72% increase in mitochondrial proteins, whereas H2O2 emission was unchanged. In parallel with the inactivation of aconitase, the intermediary metabolite citrate accumulated and played an integral part in cellular protection against oxidative stress. In contrast, the triceps failed to increase mitochondrial density, and citrate did not accumulate. Instead, mitochondrial H2O2 emission was decreased to 40% of the pretraining levels, together with a 6-fold increase in protein abundance of catalase. In this study, a novel mitochondrial stress response was highlighted where accumulation of citrate acted to preserve the redox status of the cell during periods of intense exercise.


Assuntos
Aconitato Hidratase/metabolismo , Respiração Celular , Exercício Físico , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Células Cultivadas , Ácido Cítrico/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Músculo Esquelético/enzimologia , Músculo Esquelético/fisiologia , Estresse Oxidativo , Esforço Físico
5.
Exp Physiol ; 100(10): 1118-31, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26268717

RESUMO

NEW FINDINGS: What is the central question of this study? Temperature-sensitive mechanisms are thought to contribute to blood-flow regulation, but the relationship between exercising and non-exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non-exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature- and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human limbs is not established. Blood temperature (TB ), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher TB and limb V̇O2. Leg and arm vascular conductance during exercise compared with rest was related closely to TB (r(2) = 0.91; P < 0.05), plasma ATP (r(2) = 0.94; P < 0.05) and limb V̇O2 (r(2) = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in TB and limb V̇O2, whereas ABF, arm TB and V̇O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V̇O2. In 12 trained males, increases in femoral TB and LBF during incremental leg exercise were mirrored by similar pulmonary artery TB and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, TB and aerobic metabolism in exercising and non-exercising extremities and a tight association between limb vasodilatation and increases in plasma ATP. These findings suggest that temperature and V̇O2 contribute to the regulation of limb perfusion through control of intravascular ATP.


Assuntos
Regulação da Temperatura Corporal , Exercício Físico/fisiologia , Hemodinâmica , Contração Muscular , Músculo Esquelético/irrigação sanguínea , Trifosfato de Adenosina/sangue , Adulto , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Débito Cardíaco , Metabolismo Energético , Feminino , Veia Femoral/fisiologia , Humanos , Extremidade Inferior , Masculino , Modelos Cardiovasculares , Músculo Esquelético/metabolismo , Artéria Pulmonar/fisiologia , Fluxo Sanguíneo Regional , Transdução de Sinais , Veia Subclávia/fisiologia , Fatores de Tempo , Extremidade Superior
6.
Circ J ; 78(6): 1501-6, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24759795

RESUMO

BACKGROUND: The blood flow capacity in subcutaneous adipose tissue in humans remains largely unknown, and therefore the aim of this study was to determine the physiological range of blood flow in this tissue. METHODS AND RESULTS: The subcutaneous adipose tissue blood flow (ATBF) was measured in 9 healthy young men by positron emission tomography using radiowater tracer. Subcutaneous ATBF was determined in regions adjacent to knee extensors at rest and during dynamic knee extensor exercise, and with 2 physiological perturbations: while breathing moderate systemic hypoxic air (14% O2) at rest and during exercise, and during intra-femoral artery infusion of high-dose adenosine infusion. ATBF was 1.3±0.6ml·100g(-1)·min(-1) at rest and increased with exercise (8.0±3.0ml·100g(-1)·min(-1), P<0.001) and adenosine infusion (10.5±4.9ml·100g(-1)·min(-1), P=0.001), but not when breathing moderate systemic hypoxic air (1.5±0.4ml·100g(-1)·min(-1)). ATBF was similar during exercise and adenosine infusion, but vascular conductance was lower during adenosine infusion. Finally, ATBF during exercise in moderate systemic hypoxia was reduced (6.3±2.2ml·100g(-1)·min(-1)) compared to normoxic exercise (P=0.004). CONCLUSIONS: The vasodilatation capacity of human subcutaneous adipose blood flow appears to be comparable to, or even higher, than that induced by moderate intensity exercise. Furthermore, the reduced blood flow response in subcutaneous adipose tissue during systemic hypoxia is likely to contribute, in part, to the redistribution of blood flow to exercising muscle in a condition of reduced oxygen availability.


Assuntos
Exercício Físico , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Fluxo Sanguíneo Regional , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/metabolismo , Adenosina/administração & dosagem , Adulto , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Humanos , Masculino , Vasodilatadores/administração & dosagem
7.
J Bone Miner Res ; 28(5): 1068-74, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23280932

RESUMO

Human bone blood flow and metabolism during physical exercise remains poorly characterized. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In 6 women, blood flow was measured in femoral bone at rest and during one-leg intermittent isometric exercise with increasing exercise intensities. In 9 men, blood flow in the femur was determined at rest and during dynamic one-leg exercise and two other physiological perturbations: moderate systemic hypoxia (14 O2 ) at rest and during exercise, and during intrafemoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one-leg exercise in 5 men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 mL/100 g/min) to low intensity exercise (4.1 ± 1.5 mL/100 g/min, p = 0.01), but blood flow did not increase further with increasing intensity. Resting femoral bone blood flow in men was similar to that of women and dynamic one-leg exercise increased it to 4.2 ± 1.2 mL/100 g/min, p < 0.001. Breathing of hypoxic air did not change femoral bone blood flow at rest or during exercise, but intra-arterial infusion of adenosine during resting conditions increased bone blood flow to 5.7 ± 2.4 mL/100 g/min, to the level of moderate-intensity dynamic exercise. Dynamic one-leg exercise increased femoral bone glucose uptake 4.7-fold compared to resting contralateral leg. In conclusion, resting femoral bone blood flow increases by physical exercise, but appears to level off with increasing exercise intensities. Moreover, although moderate systemic hypoxia does not change bone blood flow at rest or during exercise, intra-arterially administered adenosine during resting conditions is capable of markedly enhancing bone blood flow in humans. Finally, bone glucose uptake also increases substantially in response to exercise.


Assuntos
Osso e Ossos/irrigação sanguínea , Osso e Ossos/metabolismo , Exercício Físico , Adulto , Pressão Sanguínea , Frequência Cardíaca , Humanos , Masculino , Adulto Jovem
8.
J Physiol ; 590(14): 3349-60, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22586215

RESUMO

Skeletal muscle mitochondrial content varies extensively between human subjects. Biochemical measures of mitochondrial proteins, enzyme activities and lipids are often used as markers of mitochondrial content and muscle oxidative capacity (OXPHOS). The purpose of this study was to determine how closely associated these commonly used biochemical measures are to muscle mitochondrial content and OXPHOS. Sixteen young healthy male subjects were recruited for this study. Subjects completed a graded exercise test to determine maximal oxygen uptake (VO2peak) and muscle biopsies were obtained from the vastus lateralis. Mitochondrial content was determined using transmission electron microscopy imaging and OXPHOS was determined as the maximal coupled respiration in permeabilized fibres. Biomarkers of interest were citrate synthase (CS) activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I­V protein content, and complex I­IV activity. Spearman correlation coefficient tests and Lin's concordance tests were applied to assess the absolute and relative association between the markers and mitochondrial content or OXPHOS. Subjects had a large range of VO2peak (range 29.9­71.6ml min−1 kg−1) and mitochondrial content (4­15% of cell volume).Cardiolipin content showed the strongest association with mitochondrial content followed by CS and complex I activities. mtDNA was not related to mitochondrial content. Complex IV activity showed the strongest association with muscle oxidative capacity followed by complex II activity.We conclude that cardiolipin content, and CS and complex I activities are the biomarkers that exhibit the strongest association with mitochondrial content, while complex IV activity is strongly associated with OXPHOS capacity in human skeletal muscle.


Assuntos
Biomarcadores/análise , Mitocôndrias Musculares/química , Fibras Musculares Esqueléticas/química , Músculo Quadríceps/química , Adenosina Trifosfatases/análise , Adulto , Cardiolipinas/análise , Proteínas de Transporte/análise , Citrato (si)-Sintase/análise , Complexo I de Transporte de Elétrons/análise , Teste de Esforço , Humanos , Masculino , Proteínas de Membrana/análise , Microscopia Eletrônica de Transmissão , Mitocôndrias Musculares/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras , Fibras Musculares Esqueléticas/ultraestrutura , Fosforilação Oxidativa , Consumo de Oxigênio , Músculo Quadríceps/citologia
9.
J Appl Physiol (1985) ; 112(6): 1059-63, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223450

RESUMO

Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (∼1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.


Assuntos
Exercício Físico/fisiologia , Perna (Membro)/irrigação sanguínea , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/fisiologia , Adenosina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Humanos , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Tomografia por Emissão de Pósitrons/métodos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Descanso/fisiologia , Gordura Subcutânea/efeitos dos fármacos , Teofilina/farmacologia , Adulto Jovem
10.
Am J Physiol Regul Integr Comp Physiol ; 302(3): R385-90, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22129615

RESUMO

Glucose metabolism increases in hypoxia and can be influenced by endogenous adenosine, but the role of adenosine for regulating glucose metabolism at rest or during exercise in hypoxia has not been elucidated in humans. We studied the effects of exogenous adenosine on human skeletal muscle glucose uptake and other blood energy substrates [free fatty acid (FFA) and lactate] by infusing adenosine into the femoral artery in nine healthy young men. The role of endogenous adenosine was studied by intra-arterial adenosine receptor inhibition (aminophylline) during dynamic one-leg knee extension exercise in normoxia and acute hypoxia corresponding to ∼3,400 m of altitude. Extraction and release of energy substrates were studied by arterial-to-venous (A-V) blood samples, and total uptake or release was determined by the product of A-V differences and muscle nutritive perfusion measured by positron emission tomography. The results showed that glucose uptake increased from a baseline value of 0.2 ± 0.2 to 2.0 ± 2.2 µmol·100 g(-1)·min(-1) during adenosine infusion (P < 0.05) at rest. Although acute hypoxia enhanced arterial FFA levels, it did not affect muscle substrate utilization at rest. During exercise, glucose uptake was higher (195%) during acute hypoxia compared with normoxia (P = 0.058), and aminophylline had no effect on energy substrate utilization during exercise, despite that arterial FFA levels were increased. In conclusion, exogenous adenosine at rest and acute moderate hypoxia during low-intensity knee-extension exercise increases skeletal muscle glucose uptake, but the increase in hypoxia appears not to be mediated by adenosine.


Assuntos
Adenosina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/metabolismo , Adenosina/administração & dosagem , Adulto , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados/metabolismo , Glucose/metabolismo , Humanos , Infusões Intra-Arteriais , Lactatos/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Tomografia por Emissão de Pósitrons , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/fisiologia , Descanso/fisiologia
11.
Eur J Endocrinol ; 165(4): 631-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21798960

RESUMO

OBJECTIVE: Polycystic ovarian syndrome (PCOS) is associated with skeletal muscle insulin resistance (IR), which has been linked to decreased mitochondrial function. We measured mitochondrial respiration in lean and obese women with and without PCOS using high-resolution respirometry. METHODS: Hyperinsulinemic-euglycemic clamps (40  mU/min per m(2)) and muscle biopsies were performed on 23 women with PCOS (nine lean (body mass index (BMI) <25 kg/m(2)) and 14 obese (BMI >25 kg/m(2))) and 17 age- and weight-matched controls (six lean and 11 obese). Western blotting and high-resolution respirometry was used to determine mitochondrial function. RESULTS: Insulin sensitivity decreased with PCOS and increasing body weight. Mitochondrial respiration with substrates for complex I and complex I+II were similar in all groups, and PCOS was not associated with a decrease in mitochondrial content as measured by mitochondrial DNA/genomic DNA. We found no correlation between mitochondrial function and indices of insulin sensitivity. CONCLUSIONS: In contrast to previous reports, we found no evidence that skeletal muscle mitochondrial respiration is reduced in skeletal muscle of women with PCOS compared with control subjects. Furthermore, mitochondrial content did not differ between our control and PCOS groups. These results question the causal relationship between reduced mitochondrial function and skeletal muscle IR in PCOS.


Assuntos
Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Síndrome do Ovário Policístico/metabolismo , Absorciometria de Fóton , Adulto , Amenorreia/metabolismo , Composição Corporal/fisiologia , Índice de Massa Corporal , DNA Mitocondrial/biossíntese , DNA Mitocondrial/genética , Transporte de Elétrons/fisiologia , Feminino , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Homeostase/fisiologia , Humanos , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Oligomenorreia/metabolismo , Consumo de Oxigênio/fisiologia
12.
J Appl Physiol (1985) ; 110(6): 1607-14, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21415171

RESUMO

Twenty one healthy untrained male subjects were randomized to follow a high-fat diet (HFD; 55-60E% fat, 25-30E% carbohydrate, and 15E% protein) or a normal diet (ND; 25-35E% fat, 55-60E% carbohydrate, and 10-15E% protein) for 2(1/2) wk. Diets were isocaloric and tailored individually to match energy expenditure. At 2(1/2) wk of diet, one 60-min bout of bicycle exercise (70% of maximal oxygen uptake) was performed. Muscle biopsies were obtained before and after the diet, immediately after exercise, and after 3-h recovery. Insulin sensitivity (hyperinsulinemic-euglycemic clamp) and intramyocellular triacylglycerol content did not change with the intervention in either group. Indexes of mitochondrial density were similar across the groups and intervention. Mitochondrial respiratory rates, measured in permeabilized muscle fibers, showed a 31 ± 11 and 26 ± 9% exercise-induced increase (P < 0.05) in state 3 (glycolytic substrates) and uncoupled respiration, respectively. However, in HFD this increase was abolished. At recovery, no change from resting respiration was seen in either group. With a lipid substrate (octanoyl-carnitine with or without ADP), similar exercise-induced increases (31-62%) were seen in HFD and ND, but only in HFD was an elevated (P < 0.05) respiratory rate seen at recovery. With HFD complex I and IV protein expression decreased (P < 0.05 and P = 0.06, respectively). A fat-rich diet induces marked changes in the mitochondrial electron transport system protein content and in exercise-induced mitochondrial substrate oxidation rates, with the effects being present hours after the exercise. The effect of HFD is present even without effects on insulin sensitivity and intramyocellular lipid accumulation. An isocaloric high-fat diet does not cause insulin resistance.


Assuntos
Respiração Celular , Gorduras na Dieta/metabolismo , Metabolismo Energético , Exercício Físico , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adulto , Metabolismo Basal , Biópsia , Glicemia/metabolismo , Calorimetria Indireta , Dinamarca , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/sangue , Complexo I de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Ingestão de Energia , Técnica Clamp de Glucose , Glicólise , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , Consumo de Oxigênio , Fatores de Tempo , Triglicerídeos/sangue , Adulto Jovem
13.
Exp Physiol ; 96(6): 590-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21421702

RESUMO

Exercising muscle releases interleukin-6 (IL-6), but the mechanisms controlling this process are poorly understood. This study was performed to test the hypothesis that the IL-6 release differs in arm and leg muscle during whole-body exercise, owing to differences in muscle metabolism. Sixteen subjects (10 men and six women, with body mass index 24 ± 1 kg m(-2) and peak oxygen uptake 3.4 ± 0.6 l min(-1)) performed a 90 min combined arm and leg cycle exercise at 60% of maximal oxygen uptake. The subjects arrived at the laboratory having fasted overnight, and catheters were placed in the femoral artery and vein and in the subclavian vein. During exercise, arterial and venous limb blood was sampled and arm and leg blood flow were measured by thermodilution. Lean limb mass was measured by dual-energy X-ray absorbtiometry scanning. Before and after exercise, biopsies were obtained from vastus lateralis and deltoideus. During exercise, IL-6 release was similar between men and women and higher (P < 0.05) from arms than legs (1.01 ± 0.42 and 0.33 ± 0.12 ng min(-1) (kg lean limb mass)(-1), respectively). Blood flow (425 ± 36 and 554 ± 35 ml min(-1) (kg lean limb mass)(-1)) and fatty acid uptake (26 ± 7 and 47 ± 7 µmol min(-1) (kg lean limb mass)(-1)) were lower, glucose uptake similar (51 ± 12 and 41 ± 8 mmol min(-1) (kg lean limb mass)(-1)) and lactate release higher (82 ± 32 and -2 ± 12 µmol min(-1) (kg lean limb mass)(-1)) in arms than legs, respectively, during exercise (P < 0.05). No correlations were present between IL-6 release and exogenous substrate uptakes. Muscle glycogen was similar in arms and legs before exercise (388 ± 22 and 428 ± 25 mmol (kg dry weight)(-1)), but after exercise it was only significantly lower in the leg (219 ± 29 mmol (kg dry weight)(-1)). The novel finding of a markedly higher IL-6 release from the exercising arm compared with the leg during whole-body exercise was not directly correlated to release or uptake of exogenous substrate, nor to muscle glycogen utilization.


Assuntos
Exercício Físico/fisiologia , Interleucina-6/sangue , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Adulto , Braço/fisiologia , Glicemia/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glicogênio/metabolismo , Humanos , Lactatos/metabolismo , Perna (Membro)/fisiologia , Masculino , Fluxo Sanguíneo Regional/fisiologia , Adulto Jovem
14.
Clin Physiol Funct Imaging ; 31(2): 124-31, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21091605

RESUMO

Evidence exists for locomotor muscle impairment in patients with chronic obstructive pulmonary disease (COPD), including fiber type alterations and reduced mitochondrial oxidative capacity. In this study high-resolution respirometry was used to quantify oxygen flux in permeabilized fibres from biopsies of the vastus lateralis muscle in patients with COPD and compared to healthy control subjects. The main findings of this study were that (i) routine state 2 respiration was higher in COPD; (ii) state 3 respiration in the presence of ADP was similar in both groups with substrate supply of electrons to complex I (COPD 38·28 ± 3·58 versus control 42·85 ± 3·10 pmol s(-1) mg tissue(-1) ), but O(2) flux with addition of succinate was lower in COPD patients (COPD 63·72 ± 6·33 versus control 95·73 ± 6·53 pmol s(-1) mg tissue(-1) ); (iii) excess capacity of cytochrome c oxidase in COPD patients was only ~50% that of control subjects. These results indicate that quadriceps muscle mitochondrial function is altered in patients with COPD. The regulatory mechanisms underlying these functional abnormalities remain to be uncovered.


Assuntos
Metabolismo Energético , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio , Doença Pulmonar Obstrutiva Crônica/metabolismo , Músculo Quadríceps/metabolismo , Difosfato de Adenosina/metabolismo , Idoso , Biópsia , Estudos de Casos e Controles , Respiração Celular , Dinamarca , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Ácido Succínico/metabolismo
15.
Am J Physiol Regul Integr Comp Physiol ; 299(1): R72-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20427728

RESUMO

Although many effects of both acute and chronic hypoxia on the circulation are well characterized, the distribution and regulation of blood flow (BF) heterogeneity in skeletal muscle during systemic hypoxia is not well understood in humans. We measured muscle BF within the thigh muscles of nine healthy young men using positron emission tomography during one-leg dynamic knee extension exercise in normoxia and moderate physiological systemic hypoxia (14% O(2) corresponding to approximately 3,400 m of altitude) without and with local adenosine receptor inhibition with femoral artery infusion of aminophylline. Systemic hypoxia reduced oxygen extraction of the limb but increased muscle BF, and this flow increment was confined solely to the exercising quadriceps femoris muscle. Exercising muscle BF heterogeneity was reduced from rest (P = 0.055) but was not affected by hypoxia. Adenosine receptor inhibition had no effect on capillary BF during exercise in either normoxia or hypoxia. Finally, one-leg exercise increased muscle BF heterogeneity both in the resting posterior hamstring part of the exercising leg and in the resting contralateral leg, whereas mean BF was unchanged. In conclusion, the results show that increased BF during one-leg exercise in moderate hypoxia is confined only to the contracting muscles, and the working muscle hyperemia appears not to be directly mediated by adenosine. Increased flow heterogeneity in noncontracting muscles likely reflects sympathetic nervous constraints to curtail BF increments in areas other than working skeletal muscles, but this effect is not potentiated in moderate systemic hypoxia during small muscle mass exercise.


Assuntos
Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/fisiologia , Músculo Quadríceps/irrigação sanguínea , Adenosina/farmacologia , Adulto , Altitude , Capilares/fisiopatologia , Hemodinâmica/fisiologia , Humanos , Hiperemia/diagnóstico por imagem , Hipóxia/diagnóstico por imagem , Perna (Membro)/irrigação sanguínea , Perna (Membro)/fisiologia , Perna (Membro)/fisiopatologia , Masculino , Contração Muscular , Músculo Esquelético/diagnóstico por imagem , Oxigênio/sangue , Perfusão , Músculo Quadríceps/fisiopatologia , Cintilografia , Receptores Purinérgicos P1/metabolismo , Descanso/fisiologia , Sistema Nervoso Simpático/fisiologia , Sistema Nervoso Simpático/fisiopatologia
16.
J Physiol ; 588(Pt 12): 2023-32, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20421291

RESUMO

Adipose tissue exerts important endocrine and metabolic functions in health and disease. Yet the bioenergetics of this tissue is not characterized in humans and possible regional differences are not elucidated. Using high resolution respirometry, mitochondrial respiration was quantified in human abdominal subcutaneous and intra-abdominal visceral (omentum majus) adipose tissue from biopsies obtained in 20 obese patients undergoing bariatric surgery. Mitochondrial DNA (mtDNA) and genomic DNA (gDNA) were determined by the PCR technique for estimation of mitochondrial density. Adipose tissue samples were permeabilized and respirometric measurements were performed in duplicate at 37 degrees C. Substrates (glutamate (G) + malate (M) + octanoyl carnitine (O) + succinate (S)) were added sequentially to provide electrons to complex I + II. ADP ((D)) for state 3 respiration was added after GM. Uncoupled respiration was measured after addition of FCCP. Visceral fat contained more mitochondria per milligram of tissue than subcutaneous fat, but the cells were smaller. Robust, stable oxygen fluxes were found in both tissues, and coupled state 3 (GMOS(D)) and uncoupled respiration were significantly (P < 0.05) higher in visceral (0.95 +/- 0.05 and 1.15 +/- 0.06 pmol O(2) s(1) mg(1), respectively) compared with subcutaneous (0.76 +/- 0.04 and 0.98 +/- 0.05 pmol O(2) s(1) mg(1), respectively) adipose tissue. Expressed per mtDNA, visceral adipose tissue had significantly (P < 0.05) lower mitochondrial respiration. Substrate control ratios were higher and uncoupling control ratio lower (P < 0.05) in visceral compared with subcutaneous adipose tissue. We conclude that visceral fat is bioenergetically more active and more sensitive to mitochondrial substrate supply than subcutaneous fat. Oxidative phosphorylation has a higher relative activity in visceral compared with subcutaneous adipose tissue.


Assuntos
Respiração Celular , Metabolismo Energético , Gordura Intra-Abdominal/metabolismo , Mitocôndrias/metabolismo , Obesidade Mórbida/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Adulto , Biópsia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Respiração Celular/efeitos dos fármacos , DNA Mitocondrial/metabolismo , Metabolismo Energético/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Humanos , Gordura Intra-Abdominal/efeitos dos fármacos , Gordura Intra-Abdominal/ultraestrutura , Malatos/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/efeitos dos fármacos , Obesidade Mórbida/patologia , Omento , Fosforilação Oxidativa , Gordura Subcutânea Abdominal/efeitos dos fármacos , Gordura Subcutânea Abdominal/ultraestrutura , Ácido Succínico/metabolismo , Fatores de Tempo , Desacopladores/farmacologia
17.
J Appl Physiol (1985) ; 108(2): 378-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19940098

RESUMO

Adenosine is a widely used pharmacological agent to induce a "high-flow" control condition to study the mechanisms of exercise hyperemia, but it is not known how well an adenosine infusion depicts exercise-induced hyperemia, especially in terms of blood flow distribution at the capillary level in human muscle. Additionally, it remains to be determined what proportion of the adenosine-induced flow elevation is specifically directed to muscle only. In the present study, we measured thigh muscle capillary nutritive blood flow in nine healthy young men using PET at rest and during the femoral artery infusion of adenosine (1 mg min(-1) l thigh volume(-1)), which has previously been shown to induce a maximal whole thigh blood flow of approximately 8 l/min. This response was compared with the blood flow induced by moderate- to high-intensity one-leg dynamic knee extension exercise. Adenosine increased muscle blood flow on average to 40 +/- 7 ml x min(-1) x 100 g muscle(-1) with an aggregate value of 2.3 +/- 0.6 l/min for the whole thigh musculature. Adenosine also induced a substantial change in blood flow distribution within individuals. Muscle blood flow during the adenosine infusion was comparable with blood flow in moderate- to high-intensity exercise (36 +/- 9 ml x min(-1) x 100 g muscle(-1)), but flow heterogeneity was significantly higher during the adenosine infusion than during voluntary exercise. In conclusion, a substantial part of the flow increase in the whole limb blood flow induced by a high-dose adenosine infusion is conducted through the physiological non-nutritive shunt in muscle and/or also through tissues of the limb other than muscle. Additionally, an intra-arterial adenosine infusion does not mimic exercise hyperemia, especially in terms of muscle capillary flow heterogeneity, while the often-observed exercise-induced changes in capillary blood flow heterogeneity likely reflect true changes in nutritive flow linked to muscle fiber and vascular unit recruitment.


Assuntos
Adenosina/farmacologia , Exercício Físico/fisiologia , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/efeitos dos fármacos , Vasodilatadores/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Capilares/efeitos dos fármacos , Humanos , Infusões Intravenosas , Imageamento por Ressonância Magnética , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Consumo de Oxigênio/efeitos dos fármacos , Perfusão , Tomografia por Emissão de Pósitrons , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia , Resistência Vascular/efeitos dos fármacos , Resistência Vascular/fisiologia , Vasodilatação/efeitos dos fármacos
18.
Diabetes Res Clin Pract ; 85(3): 243-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19640601

RESUMO

AIMS: The objective was to re-examine endothelial function, insulin mediated vasodilation and glucose extraction in the forearm of patients with type 2 diabetes (T2DM) and matched control subjects (CON) to investigate whether blood flow impairments result from diabetes per se or from concurrent disease. METHODS: 18 subjects (10 with T2DM, 8 CON) had graded brachial artery infusions of endothelial dependent (acetylcholine: 15, 30, 60 microg/min), endothelial independent (sodium nitroprusside: 1, 3, 10 microg/min) and partially endothelial mediated (adenosine: 50, 150, 500 microg/min) vasodilators. The protocol was repeated during a hyperinsulinemic clamp. Forearm blood flow and glucose extraction were measured at each dose of vasodilator (with/without insulin). Measurements were also taken in the control arm, reflecting systemic insulin infusion only. RESULTS: Non-insulin mediated increases in bulk forearm blood flow were similar in T2DM and CON. However, insulin mediated forearm blood flow responses and glucose extraction were lower in T2DM versus CON. CONCLUSION: The vasodilatory effect of insulin is impaired in T2DM although bulk flow capacity is maintained. Insulin mediated glucose extraction is reduced during concomitant maximal stimulation of forearm blood flow with endothelial-dependent vasodilators, despite maintaining flow. This is consistent with previous work that associates T2DM with impaired insulin mediated capillary recruitment.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Insulina/farmacologia , Vasodilatação/fisiologia , Acetilcolina/administração & dosagem , Acetilcolina/farmacologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Glicemia/efeitos dos fármacos , Pressão Sanguínea , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/fisiologia , Artéria Braquial/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/tratamento farmacológico , Endotélio Vascular/fisiopatologia , Meia-Vida , Humanos , Hipoglicemiantes/uso terapêutico , Infusões Intra-Arteriais , Pessoa de Meia-Idade , Nitroprussiato/administração & dosagem , Nitroprussiato/farmacologia , Consumo de Oxigênio , Valores de Referência , Vasodilatação/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Vasodilatadores/farmacologia
19.
J Physiol ; 586(21): 5193-202, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18772204

RESUMO

Previous human studies have shown divergent results concerning the effects of exercise training on myocardial blood flow (MBF) at rest or during adenosine-induced hyperaemia in humans. We studied whether these responses are related to alterations in adenosine A2A receptor (A2AR) density in the left-ventricular (LV) myocardium, size and work output of the athlete's heart, or to fitness level. MBF at baseline and during intravenous adenosine infusion, and A2AR density at baseline were measured using positron emission tomography, and by a novel A(2A)R tracer in 10 healthy male endurance athletes (ET) and 10 healthy untrained (UT) men. Structural LV parameters were measured with echocardiography. LV mass index was 71% higher in ET than UT (193 +/- 18 g m(-2) versus 114 +/- 13 g m(-2), respectively). MBF per gram of tissue was significantly lower in the ET than UT at baseline, but this was only partly explained by reduced LV work load since MBF corrected for LV work was higher in ET than UT, as well as total MBF. The MBF during adenosine-induced hyperaemia was reduced in ET compared to UT, and the fitter the athlete was, the lower was adenosine-induced MBF. A2AR density was not different between the groups and was not coupled to resting or adenosine-mediated MBF. The novel findings of the present study show that the adaptations in the heart of highly trained endurance athletes lead to relative myocardial 'overperfusion' at rest. On the other hand hyperaemic perfusion is reduced, but is not explained by A2AR density.


Assuntos
Circulação Coronária/fisiologia , Coração/fisiologia , Resistência Física/fisiologia , Receptor A2A de Adenosina/metabolismo , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Exercício Físico/fisiologia , Humanos , Masculino
20.
Appl Physiol Nutr Metab ; 33(3): 593-600, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18461116

RESUMO

During exercise in humans, the alveolar-arterial O(2) tension difference ((A-a)DO(2)) increases with exercise intensity and is an important factor determining the absolute level of oxygen binding to hemoglobin and therefore the level of systemic oxygen transport. During exercise in hypoxia, the (A-a)DO(2) is accentuated. Using the multiple inert gas elimination technique it has been shown that during exercise in acute hypoxia the contribution of ventilation-perfusion inequality to (A-a)DO(2) is rather small and in the absence of pulmonary edema intrapulmonary shunts can be ruled out. This implies that the main mechanism limiting pulmonary gas exchange is diffusion limitation. It is presumed that an elevation of cardiac output during exercise in acute hypoxia should increase the (A-a)DO(2). However, no studies have examined how variations in cardiac output independently affect pulmonary diffusion with increases in exercise intensity. We have consistently observed that during steady-state, submaximal (100-120 W) exercise on the cycle ergometer in hypoxia the lung can accommodate an increase in cardiac output of approximately 2 L x min(-1) without any significant effect on pulmonary gas exchange. This result contrasts with the predicted effect of cardiac output on (A-a)DO(2) using the model of Piiper and Scheid, and thus indicates that an elevation of cardiac output is not necessarily accompanied by a reduction of mean transit time and (or) diffusion limitation during submaximal exercise in acute hypoxia. It remains to be determined what is the influence of changes in cardiac output per se on pulmonary gas exchange during high-intensity exercise.


Assuntos
Débito Cardíaco/fisiologia , Exercício Físico/fisiologia , Hipóxia/fisiopatologia , Consumo de Oxigênio/fisiologia , Troca Gasosa Pulmonar/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA