Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34758253

RESUMO

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Assuntos
Genoma Humano , Doenças Raras/genética , Adolescente , Adulto , Criança , Pré-Escolar , Características da Família , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reação em Cadeia da Polimerase , Doenças Raras/diagnóstico , Sensibilidade e Especificidade , Medicina Estatal , Reino Unido , Sequenciamento Completo do Genoma , Adulto Jovem
2.
Eur J Hum Genet ; 28(2): 202-212, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31570784

RESUMO

Next-generation sequencing (NGS) is replacing other molecular techniques to become the de facto gene diagnostics approach, transforming the speed of diagnosis for patients and expanding opportunities for precision medicine. Consequently, for accredited laboratories as well as those seeking accreditation, both objective measures of quality and external review of laboratory processes are required. External quality assessment (EQA), or Proficiency Testing (PT), can assess a laboratory's service through an independent external agency, the EQA provider. The analysis of a growing number of genes and whole exome and genomes is now routine; therefore, an EQA must be delivered to enable all testing laboratories to participate. In this paper, we describe the development of a unique platform and gene target independent EQA scheme for NGS, designed to scale from current to future requirements of clinical diagnostic laboratories testing for germline and somatic variants. The EQA results from three annual rounds indicate that clinical diagnostic laboratories are providing an increasingly high-quality NGS service and variant calling abilities are improving. From an EQA provider perspective, challenges remain regarding delivery and performance criteria, as well as in analysing similar NGS approaches between cohorts with meaningful metrics, sample sourcing and data formats.


Assuntos
Testes Genéticos/normas , Mutação em Linhagem Germinativa , Sequenciamento de Nucleotídeos em Larga Escala/normas , Neoplasias/genética , Garantia da Qualidade dos Cuidados de Saúde/métodos , Análise de Sequência de DNA/normas , Algoritmos , Humanos , Neoplasias/diagnóstico , Reprodutibilidade dos Testes
3.
Atherosclerosis ; 260: 47-55, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28349888

RESUMO

BACKGROUND AND AIMS: Familial hypercholesterolaemia (FH) is an autosomal-dominant disease with frequency of 1/500 to 1/250 that leads to premature coronary heart disease. New approaches to identify FH mutation-carriers early are needed to prevent premature cardiac deaths. In a cross-sectional study of the Avon Longitudinal Study of Parents and Children (ALSPAC), we evaluated the biochemical thresholds for FH screening in childhood, and modelled a two-stage biochemical and sequencing screening strategy for FH detection. METHODS: From 5083 ALSPAC children with cholesterol measurement at age nine years, FH genetic diagnosis was performed in 1512 individuals, using whole-genome or targeted sequencing of known FH-causing genes. Detection rate (DR) and false-positive rate (FPR) for proposed screening thresholds (total-cholesterol > 1.53, or LDL-C > 1.84 multiples of the median (MoM)) were assessed. RESULTS: Six of 1512 sequenced individuals had an FH-causing mutation of whom five had LDL-C > 1.84 MoM, giving a verification-bias corrected DR of 62.5% (95% CI: 25-92), with a FPR of 0.2% (95% CI: 0.1-0.4). The DR for the TC cut-point of 1.53 MoM was 25% (95% CI: 3.2-65.1) with a FPR of 0.4% (95% CI: 0.2-0.6). We estimated 13 of an expected 20 FH mutation carriers (and 13 of the 20 parental carriers) could be detected for every 10,000 children screened, with false-positives reliably excluded by addition of a next generation sequencing step in biochemical screen-positive samples. CONCLUSIONS: Proposed cholesterol thresholds for childhood FH screening were less accurate than previously estimated. A sequential strategy of biochemical screening followed by targeted sequencing of FH genes in screen-positive children may help mitigate the higher than previously estimated FPR and reduce wasted screening of unaffected parents.


Assuntos
LDL-Colesterol/genética , Testes Genéticos/métodos , Hiperlipoproteinemia Tipo II/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/sangue , Proteínas Adaptadoras de Transdução de Sinal/genética , Apolipoproteínas B/sangue , Apolipoproteínas B/genética , Criança , LDL-Colesterol/sangue , Estudos Transversais , DNA/genética , Análise Mutacional de DNA , Feminino , Seguimentos , Estudo de Associação Genômica Ampla , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiologia , Masculino , Linhagem
4.
Adv Exp Med Biol ; 924: 71-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27753022

RESUMO

Our UK National Health Service regional genetics laboratory offers NIPD for autosomal dominant and de novo conditions (achondroplasia, thanataphoric dysplasia, Apert syndrome), paternal mutation exclusion for cystic fibrosis and a range of bespoke tests. NIPD avoids the risks associated with invasive testing, making prenatal diagnosis more accessible to families at high genetic risk. However, the challenge remains in offering definitive diagnosis for autosomal recessive diseases, which is complicated by the predominance of the maternal mutant allele in the cell-free DNA sample and thus requires a variety of different approaches. Validation and diagnostic implementation for NIPD of congenital adrenal hyperplasia (CAH) is further complicated by presence of a pseudogene that requires a different approach. We have used an assay targeting approximately 6700 heterozygous SNPs around the CAH gene (CYP21A2) to construct the high-risk parental haplotypes and tested this approach in five cases, showing that inheritance of the parental alleles can be correctly identified using NIPD. We are evaluating various measures of the fetal fraction to help determine inheritance of parental mutations. We are currently exploring the utility of an NIPD multi-disorder panel for autosomal recessive disease, to make testing more widely applicable to families with a variety of serious genetic conditions.


Assuntos
Doenças Genéticas Inatas/genética , Ciência de Laboratório Médico/métodos , Diagnóstico Pré-Natal/métodos , Medicina Estatal , Hiperplasia Suprarrenal Congênita/sangue , Hiperplasia Suprarrenal Congênita/diagnóstico , Hiperplasia Suprarrenal Congênita/genética , DNA/sangue , DNA/genética , Feminino , Genes Dominantes , Genes Recessivos , Doenças Genéticas Inatas/sangue , Doenças Genéticas Inatas/diagnóstico , Haplótipos , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Esteroide 21-Hidroxilase/genética , Reino Unido
5.
Ann Hum Genet ; 76(3): 211-20, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22384920

RESUMO

Primary ciliary dyskinesia (PCD) is a genetic disorder, usually autosomal recessive, causing early respiratory disease and later subfertility. Whole exome sequencing may enable efficient analysis for locus heterogeneous disorders such as PCD. We whole-exome-sequenced one consanguineous Saudi Arabian with clinically diagnosed PCD and normal laterality, to attempt ab initio molecular diagnosis. We reviewed 13 known PCD genes and potentially autozygous regions (extended homozygosity) for homozygous exon deletions, non-dbSNP codon, splice-site base variants or small indels. Homozygous non-dbSNP changes were also reviewed exome-wide. One single molecular read representing RSPH9 p.Lys268del was observed, with no wild-type reads, and a notable deficiency of mapped reads at this location. Among all observations, RSPH9 was the strongest candidate for causality. Searching unmapped reads revealed seven more mutant reads. Direct assay for p.Lys268del (MboII digest) confirmed homozygosity in the affected individual, then confirmed homozygosity in three siblings with bronchiectasis. Our finding in southwest Saudi Arabia indicates that p.Lys268del, previously observed in two Bedouin families (Israel, UAE), is geographically widespread in the Arabian Peninsula. Analogous with cystic fibrosis CFTR p.Phe508del, screening for RSPH9 p.Lys268del (which lacks sentinel dextrocardia) in those at risk would help in early diagnosis, tailored clinical management, genetic counselling and primary prevention.


Assuntos
Proteínas do Citoesqueleto/genética , Síndrome de Kartagener/genética , Análise de Sequência de DNA , Consanguinidade , Análise Mutacional de DNA , Exoma , Humanos , Mutação , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA