Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860311

RESUMO

BACKGROUND: Medulloblastoma (MB) is one of the most common malignant brain tumors in children. Current treatments have increased overall survival but can lead to devastating side effects and late complications in survivors, emphasizing the need for new, improved targeted therapies that specifically eliminate tumor cells while sparing the normally developing brain. METHODS: Here, we used a SHH-MB model based on a patient-derived neuroepithelial stem (NES) cell system for an unbiased high-throughput screen with a library of 172 compounds with known targets. Compounds were evaluated in both healthy neural stem cells and tumor cells derived from the same patient. Based on the difference of cell viability and drug sensitivity score between normal cells and tumor cells, hit compounds were selected and further validated in vitro and in vivo. RESULTS: We identified PF4708671 (S6K1 inhibitor) as a potential agent that selectively targets Sonic Hedgehog (SHH) driven MB tumor cells while sparing neural stem cells and differentiated neurons. Subsequent validation studies confirmed that PF4708671 inhibited the growth of SHH-MB tumor cells both in vitro and in vivo, and that knockdown of S6K1 resulted in reduced tumor formation. CONCLUSIONS: Overall, our results suggest that inhibition of S6K1 specifically affects tumor growth, whereas it has less effect on non-tumor cells. Our data also show that the NES cell platform can be used to identify potentially effective new therapies and targets for SHH-MB.

2.
Eur J Immunol ; : e2350773, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804118

RESUMO

In the last decade, there has been a surge in developing immunotherapies to enhance the immune system's ability to eliminate tumor cells. Bispecific antibodies known as T cell engagers (TCEs) present an attractive strategy in this pursuit. TCEs aim to guide cytotoxic T cells toward tumor cells, thereby inducing a strong activation and subsequent tumor cell lysis. In this study, we investigated the activity of different TCEs on both conventional alpha-beta (αß) T cells and unconventional gamma delta (γδ) T cells. TCEs were built using camelid single-domain antibodies (VHHs) targeting the tumor-associated antigen CEACAM5 (CEA), together with T cell receptor chains or a CD3 domain. We show that Vγ9Vδ2 T cells display stronger in vitro antitumor activity than αß T cells when stimulated with a CD3xCEA TCE. Furthermore, restricting the activation of fresh human peripheral T cells to Vγ9Vδ2 T cells limited the production of protumor factors and proinflammatory cytokines, commonly associated with toxicity in patients. Taken together, our findings provide further insights that γδ T cell-specific TCEs hold promise as specific, effective, and potentially safe molecules to improve antitumor immunotherapies.

3.
J Clin Invest ; 130(9): 4637-4651, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32484803

RESUMO

γ9δ2T cells play a major role in cancer immune surveillance, yet the clinical translation of their in vitro promise remains challenging. To address limitations of previous clinical attempts using expanded γ9δ2T cells, we explored the clonal diversity of γ9δ2T cell repertoires and characterized their target. We demonstrated that only a fraction of expanded γ9δ2T cells was active against cancer cells and that activity of the parental clone, or functional avidity of selected γ9δ2 T cell receptors (γ9δ2TCRs), was not associated with clonal frequency. Furthermore, we analyzed the target-receptor interface and provided a 2-receptor, 3-ligand model. We found that activation was initiated by binding of the γ9δ2TCR to BTN2A1 through the regions between CDR2 and CDR3 of the TCR γ chain and modulated by the affinity of the CDR3 region of the TCRδ chain, which was phosphoantigen independent (pAg independent) and did not depend on CD277. CD277 was secondary, serving as a mandatory coactivating ligand. We found that binding of CD277 to its putative ligand did not depend on the presence of γ9δ2TCR, did depend on usage of the intracellular CD277, created pAg-dependent proximity to BTN2A1, enhanced cell-cell conjugate formation, and stabilized the immunological synapse (IS). This process critically depended on the affinity of the γ9δ2TCR and required membrane flexibility of the γ9δ2TCR and CD277, facilitating their polarization and high-density recruitment during IS formation.


Assuntos
Proliferação de Células , Ativação Linfocitária , Modelos Imunológicos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/imunologia , Butirofilinas/imunologia , Humanos , Células Jurkat , Proteínas de Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/patologia
4.
Front Immunol ; 9: 828, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29731756

RESUMO

Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg), such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277) molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.


Assuntos
Antígenos CD/imunologia , Antígenos/imunologia , Butirofilinas/imunologia , Ativação Linfocitária , Subpopulações de Linfócitos T/imunologia , Sequência de Aminoácidos , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos T gama-delta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA