Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(9): 4063-4072, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30726084

RESUMO

GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos de Neoplasias/imunologia , Neoplasias da Mama/microbiologia , Carboidratos/imunologia , Glicopeptídeos/imunologia , Oxigênio/imunologia , Animais , Anticorpos Monoclonais/química , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carboidratos/química , Desenho de Fármacos , Feminino , Glicopeptídeos/química , Glicosídeos/química , Glicosídeos/imunologia , Glicosilação , Humanos , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Oxigênio/química , Selênio/química , Selênio/imunologia , Enxofre/química , Enxofre/imunologia
2.
Org Biomol Chem ; 17(7): 2005-2012, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30539956

RESUMO

Monoclonal antibodies have emerged as an important class of therapeutics in oncological and autoimmune diseases due to their several attractive properties, such as high binding affinity and specificity. However, it has recently become clear that antibodies recovered from serum show a significantly decreased potency owing to various reasons, including deamidation, oxidation, fragment antigen binding (Fab) exchange, and disulfide shuffling. Fab exchange and disulfide shuffling result because of the instability of disulfides in serum. Herein, we reported a 'one-pot' stapling strategy using isobutylene motifs to stabilise the interchain disulfides of antibodies. This general method was applied to a Fab fragment of the anti-HER2 antibody. The stapled Fab was completely stable in the presence of biological thiols. The approach was further applied to two different full-length IgGs, trastuzumab and rituximab, under mild and biocompatible conditions. The binding affinity of the antibody was enhanced, relative to its native form, after being stapled. The stapled structure maintained its effector functions and behaved similarly to its native form in vivo. This work provides a straightforward and scalable method for the stabilisation of antibodies in various formats.

3.
Chembiochem ; 19(1): 48-52, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29105291

RESUMO

We present a new peptide-macrocyclization strategy with an isobutylene graft. The reaction is mild and proceeds rapidly and efficiently both for linear and cyclic peptides. The resulting isobutylene-grafted peptides possess improved passive membrane permeability due to the shielding of the polar backbone of the amides, as demonstrated by NMR spectroscopy and molecular dynamics simulations. The isobutylene-stapled structures are fully stable in human plasma and in the presence of glutathione. This strategy can be applied to bioactive cyclic peptides such as somatostatin. Importantly, we found that structural preorganization forced by the isobutylene graft leads to a significant improvement in binding. The combined advantages of directness, selectivity, and smallness could allow application to peptide macrocyclization based on this attachment of the isobutylene graft.


Assuntos
Alcenos/química , Peptídeos/metabolismo , Ciclização , Glutationa/química , Humanos , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/sangue , Peptídeos/química , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Permeabilidade , Ligação Proteica , Estrutura Terciária de Proteína
4.
RSC Adv ; 8(53): 30076-30079, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35546863

RESUMO

The preparation of well-defined d-xylo and d-ribo glycosides represents a synthetic challenge due to the limited configurational availability of starting materials and the laborious synthesis of homogeneous 2-deoxy-ß-glycosidic linkages, in particular that of the sugar-steroid motif, which represents the "stereoselective determining step" of the overall synthesis. Herein we describe the use of 2-deoxy-2-iodo-glycopyranosyl sulfoxides accessible from widely available d-xylose and d-ribose monosaccharides as privileged glycosyl donors that permit activation at very low temperature. This ensures a precise kinetic control for a complete 1,2-trans stereoselective glycosylation of particularly challenging steroidal aglycones.

5.
J Am Chem Soc ; 139(50): 18365-18375, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29206031

RESUMO

Chemical modification of proteins is essential for a variety of important diagnostic and therapeutic applications. Many strategies developed to date lack chemo- and regioselectivity as well as result in non-native linkages that may suffer from instability in vivo and adversely affect the protein's structure and function. We describe here the reaction of N-nucleophiles with the amino acid dehydroalanine (Dha) in a protein context. When Dha is chemically installed in proteins, the addition of a wide-range N-nucleophiles enables the rapid formation of amine linkages (secondary and tertiary) in a chemoselective manner under mild, biocompatible conditions. These new linkages are stable at a wide range of pH values (pH 2.8 to 12.8), under reducing conditions (biological thiols such as glutathione) and in human plasma. This method is demonstrated for three proteins and is shown to be fully compatible with disulfide bridges, as evidenced by the selective modification of recombinant albumin that displays 17 structurally relevant disulfides. The practicability and utility of our approach is further demonstrated by the construction of a chemically modified C2A domain of Synaptotagmin-I protein that retains its ability to preferentially bind to apoptotic cells at a level comparable to the native protein. Importantly, the method was useful for building a homogeneous antibody-drug conjugate with a precise drug-to-antibody ratio of 2. The kinase inhibitor crizotinib was directly conjugated to Dha through its piperidine motif, and its antibody-mediated intracellular delivery results in 10-fold improvement of its cancer cell-killing efficacy. The simplicity and exquisite site-selectivity of the aza-Michael ligation described herein allows the construction of stable secondary and tertiary amine-linked protein conjugates without affecting the structure and function of biologically relevant proteins.


Assuntos
Alanina/análogos & derivados , Albuminas/química , Aminas/química , Anexina A5/química , Sinaptotagmina I/química , Alanina/química , Animais , Anticorpos/química , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Crizotinibe , Dissulfetos/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Cinética , Camundongos , Modelos Moleculares , Estrutura Molecular , Pirazóis/química , Pirazóis/farmacologia , Piridinas/química , Piridinas/farmacologia , Teoria Quântica
6.
Chem ; 3(4): 665-677, 2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29094109

RESUMO

The emergence of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains highlights the need to develop more efficacious and potent drugs. However, this goal is dependent on a comprehensive understanding of Mtb virulence protein effectors at the molecular level. Here, we used a post-expression cysteine (Cys)-to-dehydrolanine (Dha) chemical editing strategy to identify a water-mediated motif that modulates accessibility of the protein tyrosine phosphatase A (PtpA) catalytic pocket. Importantly, this water-mediated Cys-Cys non-covalent motif is also present in the phosphatase SptpA from Staphylococcus aureus, which suggests a potentially preserved structural feature among bacterial tyrosine phosphatases. The identification of this structural water provides insight into the known resistance of Mtb PtpA to the oxidative conditions that prevail within an infected host macrophage. This strategy could be applied to extend the understanding of the dynamics and function(s) of proteins in their native state and ultimately aid in the design of small-molecule modulators.

7.
Angew Chem Int Ed Engl ; 56(47): 14963-14967, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-28968001

RESUMO

A four-membered oxygen ring (oxetane) can be readily grafted into native peptides and proteins through site-selective bis-alkylation of cysteine residues present as disulfides under mild and biocompatible conditions. The selective installation of the oxetane graft enhances stability and activity, as demonstrated for a range of biologically relevant cyclic peptides, including somatostatin, proteins, and antibodies, such as a Fab arm of the antibody Herceptin and a designed antibody DesAb-Aß against the human Amyloid-ß peptide. Oxetane grafting of the genetically detoxified diphtheria toxin CRM197 improves significantly the immunogenicity of this protein in mice, which illustrates the general utility of this strategy to modulate the stability and biological activity of therapeutic proteins containing disulfides in their structures.


Assuntos
Dissulfetos/química , Éteres Cíclicos/química , Estabilidade Proteica , Proteínas/química , Alquilação , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/imunologia , Animais , Anticorpos/imunologia , Cisteína/química , Humanos , Camundongos , Peptídeos Cíclicos/química , Conformação Proteica
8.
Chemistry ; 23(27): 6483-6489, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28261889

RESUMO

Oxetanes are four-membered ring oxygen heterocycles that are advantageously used in medicinal chemistry as modulators of physicochemical properties of small molecules. Herein, we present a simple method for the incorporation of oxetanes into proteins through chemoselective alkylation of cysteine. We demonstrate a broad substrate scope by reacting proteins used as apoptotic markers and in drug formulation, and a therapeutic antibody with a series of 3-oxetane bromides, enabling the identification of novel handles (S-to-S/N rigid, non-aromatic, and soluble linker) and reactivity modes (temporary cysteine protecting group), while maintaining their intrinsic activity. The possibility to conjugate oxetane motifs into full-length proteins has potential to identify novel drug candidates as the next-generation of peptide/protein therapeutics with improved physicochemical and biological properties.


Assuntos
Éteres Cíclicos/química , Proteínas/química , Alquilação , Anticorpos/química , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Cisteína/química , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Ressonância de Plasmônio de Superfície
9.
J Org Chem ; 82(6): 3327-3333, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28233998

RESUMO

Herein we present a chemical approach for the ready preparation of d-sarmentosyl donors enabling the first total synthesis and structure validation of cardenolide N-1, a challenging 2,6-dideoxy-3-O-methyl-ß-d-xylo-hexopyranoside extracted from Nerium oleander twigs that displays anti-inflammatory properties and cell growth inhibitory activity against tumor cells. The strategy highlights the synthetic value of the sequential methodology developed in our group for the synthesis of 2-deoxyglycosides. Key steps include Wittig-Horner olefination of a d-xylofuranose precursor, [I+]-induced 6-endo cyclization, and 1,2-trans stereoselective glycosylation.

10.
Angew Chem Int Ed Engl ; 56(1): 243-247, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27930843

RESUMO

The cleavage of a protecting group from a protein or drug under bioorthogonal conditions enables accurate spatiotemporal control over protein or drug activity. Disclosed herein is that vinyl ethers serve as protecting groups for alcohol-containing molecules and as reagents for bioorthogonal bond-cleavage reactions. A vinyl ether moiety was installed in a range of molecules, including amino acids, a monosaccharide, a fluorophore, and an analogue of the cytotoxic drug duocarmycin. Tetrazine-mediated decaging proceeded under biocompatible conditions with good yields and reasonable kinetics. Importantly, the nontoxic, vinyl ether duocarmycin double prodrug was successfully decaged in live cells to reinstate cytotoxicity. This bioorthogonal reaction presents broad applicability and may be suitable for in vivo applications.


Assuntos
Álcoois/metabolismo , Tetrazóis/metabolismo , Compostos de Vinila/metabolismo , Álcoois/química , Linhagem Celular Tumoral , Reação de Cicloadição , Elétrons , Células Hep G2 , Humanos , Cinética , Estrutura Molecular , Teoria Quântica , Tetrazóis/química , Compostos de Vinila/química
11.
Angew Chem Int Ed Engl ; 55(47): 14683-14687, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27763724

RESUMO

The unstrained S-allyl cysteine amino acid was site-specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5-tetrazines by means of an inverse-electron-demand Diels-Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre-targeting approach. The small size, easy chemical installation, and selective reactivity of the S-allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.


Assuntos
Tetrazóis/síntese química , Reação de Cicloadição , Células HEK293 , Humanos , Modelos Moleculares , Estrutura Molecular , Tetrazóis/química
12.
Nat Chem ; 8(2): 103-13, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26791892

RESUMO

Nature has produced intricate machinery to covalently diversify the structure of proteins after their synthesis in the ribosome. In an attempt to mimic nature, chemists have developed a large set of reactions that enable post-expression modification of proteins at pre-determined sites. These reactions are now used to selectively install particular modifications on proteins for many biological and therapeutic applications. For example, they provide an opportunity to install post-translational modifications on proteins to determine their exact biological roles. Labelling of proteins in live cells with fluorescent dyes allows protein uptake and intracellular trafficking to be tracked and also enables physiological parameters to be measured optically. Through the conjugation of potent cytotoxicants to antibodies, novel anti-cancer drugs with improved efficacy and reduced side effects may be obtained. In this Perspective, we highlight the most exciting current and future applications of chemical site-selective protein modification and consider which hurdles still need to be overcome for more widespread use.


Assuntos
Descoberta de Drogas/métodos , Proteínas/química , Humanos
13.
J Org Chem ; 79(7): 3060-8, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24611618

RESUMO

The preparation of challenging 2-deoxy-2-iodo-ß-D-allo precursors of 2-deoxy-ß-D-ribo-hexopyranosyl units and other analogues is reported using a robust olefination-cyclization-glycosylation sequence. Here, we particularly focus on tuning the stereoelectronic properties of the alkenyl sulfides intermediates in order to improve the diastereoselectivity of the cyclization step and, hence, the efficiency of the overall transformation. Phosphine oxides with the general formula Ph2P(O)CH2SR (R = t-Bu, Cy, p-MeOPh, 2,6-di-ClPh, and 2,6-di-MePh) were easily synthesized and subsequently used in the olefination reaction with 2,3,5-tri-O-benzyl-D-ribose and -D-arabinose. The corresponding sugar-derived alkenyl sulfides were submitted to a 6-endo [I(+)]-induced cyclization, and the resulting 2-deoxy-2-iodohexopyranosyl-1-thioglycosides were used as glycosyl donors for the stereoselective synthesis of 2-deoxy-2-iodohexopyranosyl glycosides. Among the different S-groups studied, t-Bu derivative was the best performer for the synthesis of cholesteryl 2-deoxy-2-iodomannopyranosides, whereas for the synthesis of 2-deoxy-2-iodoallopyranosides none of the derivatives here studied proved superior to the phenyl analogue previously described. Glycosylation of cholesterol with different d-allo and d-manno derivatives produced 2-deoxy-2-iodoglycosides with stereoselectivities in the same order in each case, reinforcing the involvement of an oxocarbenium ion as the common intermediate of this crucial glycosylation step.


Assuntos
Alcenos/química , Glicosídeos/síntese química , Fosfinas/química , Pró-Fármacos/síntese química , Compostos de Sulfidrila/síntese química , Tioglicosídeos/síntese química , Ciclização , Glicosídeos/química , Glicosilação , Fosfinas/síntese química , Pró-Fármacos/química , Ribose , Estereoisomerismo , Compostos de Sulfidrila/química , Tioglicosídeos/química
14.
Nat Methods ; 10(4): 343-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474466

RESUMO

Here we demonstrate quantitation of stimuli-induced proteome dynamics in primary cells by combining the power of bio-orthogonal noncanonical amino acid tagging (BONCAT) and stable-isotope labeling of amino acids in cell culture (SILAC). In conjunction with nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS), quantitative noncanonical amino acid tagging (QuaNCAT) allowed us to monitor the early expression changes of >600 proteins in primary resting T cells subjected to activation stimuli.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteômica/métodos , Aminoácidos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Ionóforos de Cálcio/farmacologia , Carcinógenos/farmacologia , Cromatografia Líquida/métodos , Humanos , Ionomicina/farmacologia , Marcação por Isótopo , Ésteres de Forbol/farmacologia , Sensibilidade e Especificidade , Espectrometria de Massas em Tandem/métodos
15.
Chem Commun (Camb) ; 47(36): 10010-2, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21833430

RESUMO

A strategy for the site-specific attachment of 2-deoxy-2-fluorosugars to cysteine and dehydroalanine tagged proteins is reported. When combined with thionation of fluorosugars, such as the widely available (18)F probe 2-deoxy-2-[(18)F]fluoroglucose ([(18)F]FDG), this methodology allows fast and direct access to site-specific [(18)F]FDG-labelled proteins.


Assuntos
Fluordesoxiglucose F18/química , Proteínas/química , Compostos Radiofarmacêuticos/química , Cisteína/química , Marcação por Isótopo , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Subtilisina/química , Subtilisina/genética , Subtilisina/metabolismo
16.
Nat Chem Biol ; 7(4): 228-35, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21378984

RESUMO

The detection of tuberculosis currently relies upon insensitive and unspecific techniques; newer diagnostics would ideally co-opt specific bacterial processes to provide real-time readouts. The trehalose mycolyltransesterase enzymes (antigens 85A, 85B and 85C (Ag85A, Ag85B, Ag85C)) serve as essential mediators of cell envelope function and biogenesis in Mycobacterium tuberculosis. Through the construction of a systematically varied sugar library, we show here that Ag85 enzymes have exceptionally broad substrate specificity. This allowed exogenously added synthetic probes to be specifically incorporated into M. tuberculosis growing in vitro and within macrophages. Even bulky substituents, such as a fluorescein-containing trehalose probe (FITC-trehalose), were incorporated by growing bacilli, thereby producing fluorescent bacteria; microscopy revealed selective labeling of poles and membrane. Addition of FITC-trehalose to M. tuberculosis-infected macrophages allowed selective, sensitive detection of M. tuberculosis within infected mammalian macrophages. These studies suggest that analogs of trehalose may prove useful as probes of function and for other imaging modalities.


Assuntos
Genes Reporter , Mycobacterium tuberculosis/metabolismo , Trealose/metabolismo , Animais , Linhagem Celular , Corantes Fluorescentes/química , Macrófagos/citologia , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , Microscopia de Fluorescência , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Especificidade por Substrato , Trealose/análogos & derivados , Trealose/genética
17.
Chem Commun (Camb) ; (25): 3714-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19557258

RESUMO

Multiple, complementary methods are reported for the chemical conversion of cysteine to S-allyl cysteine on protein surfaces, a useful transformation for the exploration of olefin metathesis on proteins.


Assuntos
Alcenos/química , Cisteína/análogos & derivados , Proteínas/química , Compostos Alílicos/química , Bacillus/enzimologia , Cisteína/química , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Subtilisina/química , Sulfetos/química
18.
J Org Chem ; 70(25): 10297-310, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16323838

RESUMO

[reaction: see text] A general procedure for the stereoselective synthesis of 2-deoxy-2-iodo-hexo- and -hepto-pyranosyl glycosides from furanoses is reported. The proposed methodology provides a new route for accessing 2-deoxy-oligosaccharides. The procedure involves three reactions: Wittig-Horner olefination to give alkenyl sulfanyl derivatives, electrophilic iodine-induced cyclization to give phenyl 2-deoxy-2-iodo-1-thio-hexo-glycosides, and glycosylation. Protected furanoses 1, 3, and 6-11, which include examples of the four possible isomeric configurations of furanoses, were reacted with diphenyl phenylsulfanylmethyl phosphine oxide to give the alkenyl sulfanyl derivatives 2, 4, and 12-16. The iodine-induced cyclization of these compounds afforded the phenyl 2-deoxy-2-iodo-1-thio-glycosides 18, 20, and 22-27 with practically complete regio- and stereoselectivity. Products of 6-endo cyclization, in which the iodine at C-2 was in a cis relationship with the alkoxy at C-3, were almost exclusively produced. Better yields were obtained for compounds with a ribo or xylo configuration than for compounds with other configurations. Compounds 18, 20, and 22-27 were found to be efficient glycosyl donors in the glycosylation of cholesterol and glucopyranoside 29a, affording the corresponding 2-deoxy-2-iodo-glycosides and 2-deoxy-2-iodo-oligosaccharides with good yields and stereoselectivities. The glycosydic bond in the major isomers was always trans to the iodine at C-2.


Assuntos
Furanos/química , Glicosídeos/síntese química , Oligossacarídeos/síntese química , Desoxiaçúcares/síntese química , Glicosilação , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA