Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 6(10): 1564-1572, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109654

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors essential for life. It is largely thought that the emergence of oxygenic photosynthesis and progressive oxygenation of the atmosphere led to the origin of multiprotein machineries (ISC, NIF and SUF) assisting Fe-S cluster synthesis in the presence of oxidative stress and shortage of bioavailable iron. However, previous analyses have left unclear the origin and evolution of these systems. Here, we combine exhaustive homology searches with genomic context analysis and phylogeny to precisely identify Fe-S cluster biogenesis systems in over 10,000 archaeal and bacterial genomes. We highlight the existence of two additional and clearly distinct 'minimal' Fe-S cluster assembly machineries, MIS (minimal iron-sulfur) and SMS (SUF-like minimal system), which we infer in the last universal common ancestor (LUCA) and we experimentally validate SMS as a bona fide Fe-S cluster biogenesis system. These ancestral systems were kept in archaea whereas they went through stepwise complexification in bacteria to incorporate additional functions for higher Fe-S cluster synthesis efficiency leading to SUF, ISC and NIF. Horizontal gene transfers and losses then shaped the current distribution of these systems, driving ecological adaptations such as the emergence of aerobic lifestyles in archaea. Our results show that dedicated machineries were in place early in evolution to assist Fe-S cluster biogenesis and that their origin is not directly linked to Earth oxygenation.


Assuntos
Proteínas Ferro-Enxofre , Genoma Bacteriano , Ferro , Proteínas Ferro-Enxofre/genética , Filogenia , Enxofre/metabolismo
2.
Elife ; 112022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35244541

RESUMO

Iron-sulfur (Fe-S) clusters are ancient and ubiquitous protein cofactors and play irreplaceable roles in many metabolic and regulatory processes. Fe-S clusters are built and distributed to Fe-S enzymes by dedicated protein networks. The core components of these networks are widely conserved and highly versatile. However, Fe-S proteins and enzymes are often inactive outside their native host species. We sought to systematically investigate the compatibility of Fe-S networks with non-native Fe-S enzymes. By using collections of Fe-S enzyme orthologs representative of the entire range of prokaryotic diversity, we uncovered a striking correlation between phylogenetic distance and probability of functional expression. Moreover, coexpression of a heterologous Fe-S biogenesis pathway increases the phylogenetic range of orthologs that can be supported by the foreign host. We also find that Fe-S enzymes that require specific electron carrier proteins are rarely functionally expressed unless their taxon-specific reducing partners are identified and co-expressed. We demonstrate how these principles can be applied to improve the activity of a radical S-adenosyl methionine(rSAM) enzyme from a Streptomyces antibiotic biosynthesis pathway in Escherichia coli. Our results clarify how oxygen sensitivity and incompatibilities with foreign Fe-S and electron transfer networks each impede heterologous activity. In particular, identifying compatible electron transfer proteins and heterologous Fe-S biogenesis pathways may prove essential for engineering functional Fe-S enzyme-dependent pathways.


Assuntos
Proteínas de Escherichia coli , Proteínas Ferro-Enxofre , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Filogenia , Enxofre/metabolismo
3.
J Biol Chem ; 295(27): 9021-9032, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32409583

RESUMO

Many proteobacteria, such as Escherichia coli, contain two main types of quinones: benzoquinones, represented by ubiquinone (UQ) and naphthoquinones, such as menaquinone (MK), and dimethyl-menaquinone (DMK). MK and DMK function predominantly in anaerobic respiratory chains, whereas UQ is the major electron carrier in the reduction of dioxygen. However, this division of labor is probably not very strict. Indeed, a pathway that produces UQ under anaerobic conditions in an UbiU-, UbiV-, and UbiT-dependent manner has been discovered recently in E. coli Its physiological relevance is not yet understood, because MK and DMK are also present in E. coli Here, we established that UQ9 is the major quinone of Pseudomonas aeruginosa and is required for growth under anaerobic respiration (i.e. denitrification). We demonstrate that the ORFs PA3911, PA3912, and PA3913, which are homologs of the E. coli ubiT, ubiV, and ubiU genes, respectively, are essential for UQ9 biosynthesis and, thus, for denitrification in P. aeruginosa These three genes here are called ubiTPa , ubiVPa , and ubiUPa We show that UbiVPa accommodates an iron-sulfur [4Fe-4S] cluster. Moreover, we report that UbiUPa and UbiTPa can bind UQ and that the isoprenoid tail of UQ is the structural determinant required for recognition by these two Ubi proteins. Since the denitrification metabolism of P. aeruginosa is believed to be important for the pathogenicity of this bacterium in individuals with cystic fibrosis, our results highlight that the O2-independent UQ biosynthetic pathway may represent a target for antibiotics development to manage P. aeruginosa infections.


Assuntos
Desnitrificação/fisiologia , Pseudomonas aeruginosa/metabolismo , Ubiquinona/biossíntese , Vias Biossintéticas , Respiração Celular , Transporte de Elétrons , Oxigênio/metabolismo , Quinonas/metabolismo , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
4.
Methods Mol Biol ; 1615: 221-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28667616

RESUMO

The discovery of protein-protein interaction networks can lead to the unveiling of protein complex(es) forming cellular machinerie(s) or reveal component proteins of a specific cellular pathway. Deciphering protein-protein interaction networks therefore contributes to a deeper understanding of how cells function. Here we describe the protocol to perform tandem affinity purification (TAP) in bacteria, which enables the identification of the partners of a bait protein under native conditions. This method consists in two sequential steps of affinity purification using two different tags. For that purpose, the bait protein is translationally fused to the TAP tag, which consists of a calmodulin binding peptide (CBP) and two immunoglobulin G (IgG) binding domains of Staphylococcus aureus protein A (ProtA) that are separated by the tobacco etch virus (TEV) protease cleavage site. After the first round of purification based on the binding of ProtA to IgG coated beads, TEV protease cleavage releases CBP-tagged bait-protein along with its partners for a second round of purification on calmodulin affinity resin and leaves behind protein contaminants bound to IgG. Creating the TAP-tag translational fusion at the chromosomal locus allows detection of protein interactions occurring in physiological conditions.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Western Blotting , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Expressão Gênica , Ordem dos Genes , Vetores Genéticos/genética , Imunoprecipitação , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Proteômica , Proteínas Recombinantes de Fusão , Espectrometria de Massas em Tandem
5.
PLoS Genet ; 13(1): e1006556, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28085879

RESUMO

Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS), the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1) is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and ß-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways.


Assuntos
Proteína de Transporte de Acila/metabolismo , Sistemas de Secreção Tipo III/metabolismo , Acetilação , Proteína de Transporte de Acila/genética , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Processamento de Proteína Pós-Traducional , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo
6.
Mol Microbiol ; 99(3): 571-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26480956

RESUMO

During amino acid starvation, bacterial cells rapidly synthesize the nucleotides (p)ppGpp, causing a massive re-programming of the transcriptional profile known as the stringent response. The (p)ppGpp synthase RelA is activated by ribosomes harboring an uncharged tRNA at the A site. It is unclear whether synthesis occurs while RelA is bound to the ribosome or free in the cytoplasm. We present a study of three Escherichia coli strains, each expressing a different RelA-fluorescent protein (RelA-FP) construct: RelA-YFP, RelA-mEos2 and RelA-Dendra2. Single-molecule localization and tracking studies were carried out under normal growth conditions and during amino acid starvation. Study of three labeling schemes enabled us to assess potential problems with FP labeling of RelA. The diffusive trajectories and axial spatial distributions indicate that amino acid starvation induces net binding of all three RelA-FP constructs to 70S ribosomes. The data are most consistent with a model in which RelA synthesizes (p)ppGpp while bound to the 70S ribosome. We suggest a 'short hopping time' model of RelA activity during starvation. Our results contradict an earlier study of RelA-Dendra2 diffusion that inferred off-ribosome synthesis of (p)ppGpp. The reasons for the discrepancy remain unclear.


Assuntos
Aminoácidos/metabolismo , Escherichia coli/enzimologia , Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Ligases/genética , Transporte Proteico , Ribossomos/genética , Ribossomos/metabolismo
7.
Transgenic Res ; 25(1): 45-61, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26560313

RESUMO

Taking into account that fatty acid (FA) biosynthesis plays a crucial role in lipid accumulation in olive (Olea europaea L.) mesocarp, we investigated the effect of olive acyl carrier protein (ACP) on FA composition by overexpressing an olive ACP cDNA in tobacco plants. The OeACP1.1A cDNA was inserted in the nucleus or in the chloroplast DNA of different tobacco plants, resulting in extensive transcription of the transgenes. The transplastomic plants accumulated lower olive ACP levels in comparison to nuclear-transformed plants. Moreover, the phenotype of the former plants was characterized by pale green/white cotyledons with abnormal chloroplasts, delayed germination and reduced growth. We suggest that the transplastomic phenotype was likely caused by inefficient olive ACP mRNA translation in chloroplast stroma. Conversely, total lipids from leaves of nuclear transformants expressing high olive ACP levels showed a significant increase in oleic acid (18:1) and linolenic acid (18:3), and a concomitant significant reduction of hexadecadienoic acid (16:2) and hexadecatrienoic acid (16:3). This implies that in leaves of tobacco transformants, as likely in the mesocarp of olive fruit, olive ACP not only plays a general role in FA synthesis, but seems to be specifically involved in chain length regulation forwarding the elongation to C18 FAs and the subsequent desaturation to 18:1 and 18:3.


Assuntos
Proteína de Transporte de Acila/metabolismo , Ácidos Graxos/metabolismo , Nicotiana/genética , Olea/genética , Folhas de Planta/metabolismo , Proteína de Transporte de Acila/genética , Cotilédone/genética , Cotilédone/metabolismo , Escherichia coli/genética , Ácidos Graxos/química , Ácidos Graxos/genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Metabolismo dos Lipídeos/genética , Folhas de Planta/genética , Plantas Geneticamente Modificadas , Plastídeos/genética , Nicotiana/metabolismo , Transgenes
8.
J Mol Biol ; 426(24): 4099-4111, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25315821

RESUMO

Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction.


Assuntos
Membrana Celular/metabolismo , Neuropilina-1/metabolismo , Neuropilina-2/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sequência de Aminoácidos , Western Blotting , Humanos , Microscopia de Fluorescência , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Molécula L1 de Adesão de Célula Nervosa/química , Molécula L1 de Adesão de Célula Nervosa/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuropilina-1/química , Neuropilina-1/genética , Neuropilina-2/química , Neuropilina-2/genética , Ligação Proteica , Mapeamento de Interação de Proteínas/métodos , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
9.
J Bacteriol ; 191(2): 616-24, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18996989

RESUMO

Bacteria respond to nutritional stress by producing (p)ppGpp, which triggers a stringent response resulting in growth arrest and expression of resistance genes. In Escherichia coli, RelA produces (p)ppGpp upon amino acid starvation by detecting stalled ribosomes. The SpoT enzyme responds to various other types of starvation by unknown mechanisms. We previously described an interaction between SpoT and the central cofactor of lipid synthesis, acyl carrier protein (ACP), which is involved in detecting starvation signals in lipid metabolism and triggering SpoT-dependent (p)ppGpp accumulation. However, most bacteria possess a unique protein homologous to RelA/SpoT (Rsh) that is able to synthesize and degrade (p)ppGpp and is therefore more closely related to SpoT function. In this study, we asked if the ACP-SpoT interaction is specific for bacteria containing two RelA and SpoT enzymes or if it is a general feature that is conserved in Rsh enzymes. By testing various combinations of SpoT, RelA, and Rsh enzymes and ACPs of E. coli, Pseudomonas aeruginosa, Bacillus subtilis and Streptococcus pneumoniae, we found that the interaction between (p)ppGpp synthases and ACP seemed to be restricted to SpoT proteins of bacteria containing the two RelA and SpoT proteins and to ACP proteins encoded by genes located in fatty acid synthesis operons. When Rsh enzymes from B. subtilis and S. pneumoniae are produced in E. coli, the behavior of these enzymes is different from the behavior of both RelA and SpoT proteins with respect to (p)ppGpp synthesis. This suggests that bacteria have evolved several different modes of (p)ppGpp regulation in order to respond to nutrient starvation.


Assuntos
Proteína de Transporte de Acila/metabolismo , Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Ligases/metabolismo , Pirofosfatases/metabolismo , Proteína de Transporte de Acila/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Ligases/genética , Ligação Proteica , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pirofosfatases/genética , Streptococcus pneumoniae/enzimologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo
10.
Proteomics ; 8(22): 4768-71, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18924111

RESUMO

The original vectors of the bacterial two-hybrid technique developed by Karimova et al. in 1998 did not enable detection of the recombinant proteins. Here, we propose two methods resolving this problem, either using new plasmids containing the Flag epitope, or using a trick to detect the T18 domain of adenylate cyclase. Furthermore, we describe a set of vectors for TAP, CBP or 6-histidine tagging that possess the same cloning site as our two-hybrid vectors.


Assuntos
Proteínas Recombinantes de Fusão/análise , Técnicas do Sistema de Duplo-Híbrido , Far-Western Blotting , Proteínas de Ligação a Calmodulina/química , Histidina , Oligopeptídeos , Peptídeos/química , Plasmídeos
11.
Biochimie ; 84(5-6): 413-21, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12423784

RESUMO

The aim of this review is to describe an in vivo assay of the interactions taking place in the Tol-Pal or TonB-ExbB-ExbD envelope complexes in the periplasm of Escherichia coli and between them and colicins or g3p protein of filamentous bacteriophages. Domains of colicins or periplasmic soluble domains of Tol or TonB proteins can be artificially addressed to the periplasm of bacteria by fusing them to a signal sequence from an exported protein. These domains interact specifically in the periplasm with the Tol or TonB complexes and disturb their function, which can be directly detected by the appearance of specific tol or tonB phenotypes. This technique can be used to detect new interactions, to characterize them biochemically and to map them or to induce tol or tonB phenotypes to study the functions of these two complexes.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas do Capsídeo/metabolismo , Colicinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/metabolismo , Periplasma/metabolismo , Proteínas Virais de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA