Assuntos
Amidas/química , Ácidos Fosfóricos/química , Polietilenoglicóis/química , Apoptose , Humanos , Células Jurkat , Peptídeos , ProteóliseRESUMO
Cell-penetrating peptides (CPPs) are versatile tools for the intracellular delivery of various biomolecules, including siRNA. Recently, CPPs were introduced that showed greatly enhanced delivery efficiency. However, the molecular basis of this increased activity is poorly understood. Here, we performed a detailed analysis of the molecular and physicochemical properties of seven different siRNA-CPP nanoparticles. In addition, we determined which complexes are internalized most efficiently into the leukemia cell-line SKNO-1, and subsequently inhibited the expression of a luciferase reporter gene. We demonstrated effective complexation of siRNA for all tested CPPs, and optimal encapsulation of the siRNA was achieved at very similar molar ratios independent of peptide charge. However, CPPs with an extreme high or low overall charge proved to be exceptions, suggesting an optimal range of charge for CPP-siRNA nanoparticle formation based on opposite charge. The most active CPP (PepFect6) displayed high serum resistance but also high sensitivity to decomplexation by polyanionic macromolecules, indicating the necessity for partial decomplexation for efficient uptake. Surprisingly, CPP-siRNA complexes acquired a negative ζ-potential in the presence of serum. These novel insights shed light on the observation that cell association is necessary but not sufficient for activity and motivate new research into the nature of the nanoparticle-cell interaction. Overall, our results provide a comprehensive molecular basis for the further development of peptide-based oligonucleotide transfection agents.
Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Nanoestruturas , RNA Interferente Pequeno/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/toxicidade , Portadores de Fármacos/toxicidade , Humanos , Dados de Sequência Molecular , Estabilidade Proteica , RNA Interferente Pequeno/genética , TransfecçãoRESUMO
With significant progress in delivery technologies, peptides and peptidomimetics are receiving increasing attention as potential therapeutics also for intracellular applications. However, analyses of the intracellular behavior of peptides are a challenge; therefore, knowledge on the intracellular pharmacokinetics of peptides is limited. So far, most research has focused on peptide degradation in the context of antigen processing, rather than on peptide stability. Here, we studied the structure-activity relationship of peptides with respect to intracellular residence time and proteolytic breakdown. The peptides comprised a collection of interaction motifs of SH2 and SH3 domains with different charge but that were of similar size and carried an N-terminal fluorescein moiety. First, we show that electroporation is a highly powerful technique to introduce peptides with different charge and hydrophobicity in uniform yields. Remarkably, the peptides differed strongly in retention of intracellular fluorescence with half-lives ranging from only 1 to more than 10 h. Residence times were greatly increased for retro-inverso peptides, demonstrating that rapid loss of fluorescence is a function of peptide degradation rather than the physicochemical characteristics of the peptide. Differences in proteolytic sensitivity were further confirmed using fluorescence correlation spectroscopy as a separation-free analytical technique to follow degradation in crude cell lysates and also in intact cells. The results provide a straightforward analytical access to a better understanding of the principles of peptide stability inside cells and will therefore greatly assist the development of bioactive peptides.
Assuntos
Peptídeos/farmacocinética , Sequência de Aminoácidos , Linhagem Celular , Eletroporação , Citometria de Fluxo , Fluorescência , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Peptídeos/química , Peptidomiméticos , Espectrometria de Fluorescência , Relação Estrutura-AtividadeRESUMO
A large number of mutations in rhodopsin are associated with autosomal dominant retinitis pigmentosa (ADRP). We analyzed the biochemical phenotypes of the ADRP-associated cysteine mutants C167R, C222R, and C264del. C222R behaved as wild type in every aspect testable and is classified as a class I mutant. C167R produced intact protein but did not regenerate with 11-cis retinal and was not transported to the plasma membrane. We confirm its classification as a class IIa mutant. C264del represents a novel phenotype, which we propose to call class III. It produced a truncated protein of 27kDa that failed to regenerate with 11-cis retinal and was not targeted to the plasma membrane.