Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cells ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38920664

RESUMO

Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.


Assuntos
Hepacivirus , Poliaminas , Prolina , Ureia , Replicação Viral , Prolina/metabolismo , Humanos , Hepacivirus/fisiologia , Hepacivirus/efeitos dos fármacos , Poliaminas/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Replicação Viral/efeitos dos fármacos , Arginase/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Linhagem Celular Tumoral , Prolina Oxidase/metabolismo
2.
Br J Clin Pharmacol ; 88(12): 5336-5347, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831229

RESUMO

AIMS: Locally advanced rectal cancer (LARC) is an area of unmet medical need with one third of patients dying from their disease. With response to neoadjuvant chemo-radiotherapy being a major prognostic factor, trial SAKK 41/16 assessed potential benefits of adding regorafenib to capecitabine-amplified neoadjuvant radiotherapy in LARC patients. METHODS: Patients received regorafenib at three dose levels (40/80/120 mg once daily) combined with capecitabine 825 mg/m2 bidaily and local radiotherapy. We developed population pharmacokinetic models from plasma concentrations of capecitabine and its metabolites 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine as well as regorafenib and its metabolites M-2 and M-5 as implemented into SAKK 41/16 to assess potential drug-drug interactions (DDI). After establishing parent-metabolite base models, drug exposure parameters were tested as covariates within the respective models to investigate for potential DDI. Simulation analyses were conducted to quantify their impact. RESULTS: Plasma concentrations of capecitabine, regorafenib and metabolites were characterized by one and two compartment models and absorption was described by parallel first- and zero-order processes and transit compartments, respectively. Apparent capecitabine clearance was 286 L/h (relative standard error [RSE] 14.9%, interindividual variability [IIV] 40.1%) and was reduced by regorafenib cumulative area under the plasma concentration curve (median reduction of 45.6%) as exponential covariate (estimate -4.10 × 10-4 , RSE 17.8%). Apparent regorafenib clearance was 1.94 L/h (RSE 12.1%, IIV 38.1%). Simulation analyses revealed significantly negative associations between capecitabine clearance and regorafenib exposure. CONCLUSIONS: This work informs the clinical development of regorafenib and capecitabine combination treatment and underlines the importance of studying potential DDI with new anticancer drug combinations.


Assuntos
Compostos de Fenilureia , Neoplasias Retais , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Capecitabina , Fluoruracila/uso terapêutico , Piridinas , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/induzido quimicamente
3.
Cell Death Differ ; 27(6): 1965-1980, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31844253

RESUMO

In contrast to the "Warburg effect" or aerobic glycolysis earlier generalized as a phenomenon in cancer cells, more and more recent evidence indicates that functional mitochondria are pivotal for ensuring the energy supply of cancer cells. Here, we report that cancer cells with reduced autophagy-related protein 12 (ATG12) expression undergo an oncotic cell death, a phenotype distinct from that seen in ATG5-deficient cells described before. In addition, using untargeted metabolomics with ATG12-deficient cancer cells, we observed a global reduction in cellular bioenergetic pathways, such as ß-oxidation (FAO), glycolysis, and tricarboxylic acid cycle activity, as well as a decrease in mitochondrial respiration as monitored with Seahorse experiments. Analyzing the biogenesis of mitochondria by quantifying mitochondrial DNA content together with several mitochondrion-localizing proteins indicated a reduction in mitochondrial biogenesis in ATG12-deficient cancer cells, which also showed reduced hexokinase II expression and the upregulation of uncoupling protein 2. ATG12, which we observed in normal cells to be partially localized in mitochondria, is upregulated in multiple types of solid tumors in comparison with normal tissues. Strikingly, mouse xenografts of ATG12-deficient cells grew significantly slower as compared with vector control cells. Collectively, our work has revealed a previously unreported role for ATG12 in regulating mitochondrial biogenesis and cellular energy metabolism and points up an essential role for mitochondria as a failsafe mechanism in the growth and survival of glycolysis-dependent cancer cells. Inducing oncosis by imposing an ATG12 deficiency in solid tumors might represent an anticancer therapy preferable to conventional caspase-dependent apoptosis that often leads to undesirable consequences, such as incomplete cancer cell killing and a silencing of the host immune system.


Assuntos
Proteína 12 Relacionada à Autofagia/fisiologia , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Glicólise , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
4.
BMC Cancer ; 19(1): 1216, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842810

RESUMO

BACKGROUND: Little is known about the relationship between the metabolite profile of plasma from pre-operative prostate cancer (PCa) patients and the risk of PCa progression. In this study we investigated the association between pre-operative plasma metabolites and risk of biochemical-, local- and metastatic-recurrence, with the aim of improving patient stratification. METHODS: We conducted a case-control study within a cohort of PCa patients recruited between 1996 and 2015. The age-matched primary cases (n = 33) were stratified in low risk, high risk without progression and high risk with progression as defined by the National Comprehensive Cancer Network. These samples were compared to metastatic (n = 9) and healthy controls (n = 10). The pre-operative plasma from primary cases and the plasma from metastatic patients and controls were assessed with untargeted metabolomics by LC-MS. The association between risk of progression and metabolite abundance was calculated using multivariate Cox proportional-hazard regression and the relationship between metabolites and outcome was calculated using median cut-off normalized values of metabolite abundance by Log-Rank test using the Kaplan Meier method. RESULTS: Medium-chain acylcarnitines (C6-C12) were positively associated with the risk of PSA progression (p = 0.036, median cut-off) while long-chain acylcarnitines (C14-C16) were inversely associated with local (p = 0.034) and bone progression (p = 0.0033). In primary cases, medium-chain acylcarnitines were positively associated with suberic acid, which also correlated with the risk of PSA progression (p = 0.032, Log-Rank test). In the metastatic samples, this effect was consistent for hexanoylcarnitine, L.octanoylcarnitine and decanoylcarnitine. Medium-chain acylcarnitines and suberic acid displayed the same inverse association with tryptophan, while indoleacetic acid, a breakdown product of tryptophan metabolism was strongly associated with PSA (p = 0.0081, Log-Rank test) and lymph node progression (p = 0.025, Log-Rank test). These data were consistent with the increased expression of indoleamine 2,3 dioxygenase (IDO1) in metastatic versus primary samples (p = 0.014). Finally, functional experiments revealed a synergistic effect of long chain fatty acids in combination with dihydrotestosterone administration on the transcription of androgen responsive genes. CONCLUSIONS: This study strengthens the emerging link between fatty acid metabolism and PCa progression and suggests that measuring levels of medium- and long-chain acylcarnitines in pre-operative patient plasma may provide a basis for improving patient stratification.


Assuntos
Carnitina/análogos & derivados , Metabolômica , Neoplasias da Próstata/sangue , Idoso , Carnitina/sangue , Carnitina/metabolismo , Estudos de Casos e Controles , Cromatografia Líquida , Progressão da Doença , Ácidos Graxos/metabolismo , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/diagnóstico , População Branca
5.
Hepatobiliary Surg Nutr ; 8(1): 69-71, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30881971
6.
Respir Res ; 19(1): 7, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321022

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. Patients present loss of lung function, dyspnea and dry cough. Diagnosis requires compatible radiologic imaging and, in undetermined cases, invasive procedures such as bronchoscopy and surgical lung biopsy. The pathophysiological mechanisms of IPF are not completely understood. Lung injury with abnormal alveolar epithelial repair is thought to be a major cause for activation of profibrotic pathways in IPF. Metabolic signatures might indicate pathological pathways involved in disease development and progression. Reliable serum biomarker would help to improve both diagnostic approach and monitoring of drug effects. METHOD: The global metabolic profiles measured by ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) of ten stable IPF patients were compared to the ones of ten healthy participants. The results were validated in an additional study of eleven IPF patients and ten healthy controls. RESULTS: We discovered 10 discriminative metabolic features using multivariate and univariate statistical analysis. Among them, we identified one metabolite at a retention time of 9.59 min that was two times more abundant in the serum of IPF patients compared to healthy participants. Based on its ion pattern, a lysophosphatidylcholine (LysoPC) was proposed. LysoPC is a precursor of lysophosphatidic acid (LPA) - a known mediator for lung fibrosis with its pathway currently being evaluated as new therapeutic drug target for IPF and other fibrotic diseases. CONCLUSIONS: We identified a LysoPC by UHPLC-HRMS as potential biomarker in serum of patients with IPF. Further validation studies in a larger cohort are necessary to determine its role in IPF. TRIAL REGISTRATION: Serum samples from IPF patients have been obtained within the clinical trial NCT02173145 at baseline and from the idiopathic interstitial pneumonia (IIP) cohort study. The study was approved by the Swiss Ethics Committee, Bern (KEK 002/14 and 246/15 or PB_2016-01524).


Assuntos
Fibrose Pulmonar Idiopática/sangue , Fibrose Pulmonar Idiopática/diagnóstico , Lisofosfatidilcolinas/sangue , Metabolômica/métodos , Metabolômica/normas , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Reprodutibilidade dos Testes , Capacidade Vital/fisiologia
7.
J Breath Res ; 12(1): 016003, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-28775244

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with poor survival. There is an urgent need to better diagnose and monitor IPF patients as new treatments which slow down disease progression are now available. Exhaled breath condensate (EBC) is easily and non-invasively collected, but analysis of potential biomarkers is difficult due to low concentrations and methodological limitations. We used a non-targeted metabolomics approach to identify discriminatory metabolic profiles that distinguish IPF patients from healthy controls. For the pilot study set, we collected EBC from 10 stable IPF patients and 10 lung healthy controls. Samples were analyzed by ultra high-performance liquid chromatography coupled to high-resolution mass spectrometry in positive and negative ion mode. After data processing and statistical analysis, 58 metabolites were found to be discriminative between IPF patients and controls in the positive ion mode. One metabolite candidate m/z = 341.3514 at a retention time of 9.94 min was 2.5-fold up-regulated in IPF patients compared to healthy controls and validated in a second set of eight IPF patients and healthy controls. The identity of this metabolic feature still remains elusive. Our preliminary results identified a distinguished EBC profile of IPF patients compared to controls. Although these results need to be confirmed in additional individuals, EBC sampling for diagnosis and/or monitoring of IPF patients is a promising new method, which should be further explored. The EBC samples have been obtained within the clinical trial NCT02173145 at baseline.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Expiração , Fibrose Pulmonar Idiopática/diagnóstico , Idoso , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Metaboloma , Metabolômica , Projetos Piloto , Reprodutibilidade dos Testes
8.
PLoS One ; 11(3): e0150219, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26950072

RESUMO

The chemoprotective properties of sulforaphane (SF), derived from cruciferous vegetables, are widely acknowledged to arise from its potent induction of xenobiotic-metabolizing and antioxidant enzymes. However, much less is known about the impact of SF on the efficacy of cancer therapy through the modulation of drug-metabolizing enzymes. To identify proteins modulated by a low concentration of SF, we treated HT29 colon cancer cells with 2.5 µM SF. Protein abundance changes were detected by stable isotope labeling of amino acids in cell culture. Among 18 proteins found to be significantly up-regulated, aldo-keto reductase 1C3 (AKR1C3), bioactivating the DNA cross-linking prodrug PR-104A, was further characterized. Preconditioning HT29 cells with SF reduced the EC50 of PR-104A 3.6-fold. The increase in PR-104A cytotoxicity was linked to AKR1C3 abundance and activity, both induced by SF in a dose-dependent manner. This effect was reproducible in a second colon cancer cell line, SW620, but not in other colon cancer cell lines where AKR1C3 abundance and activity were absent or barely detectable and could not be induced by SF. Interestingly, SF had no significant influence on PR-104A cytotoxicity in non-cancerous, immortalized human colonic epithelial cell lines expressing either low or high levels of AKR1C3. In conclusion, the enhanced response of PR-104A after preconditioning with SF was apparent only in cancer cells provided that AKR1C3 is expressed, while its expression in non-cancerous cells did not elicit such a response. Therefore, a subset of cancers may be susceptible to combined food-derived component and prodrug treatments with no harm to normal tissues.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/patologia , Isotiocianatos/farmacologia , Compostos de Mostarda Nitrogenada/farmacologia , 3-Hidroxiesteroide Desidrogenases/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase , Antineoplásicos/efeitos adversos , Transporte Biológico , Linhagem Celular Tumoral , Diploide , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiprostaglandina Desidrogenases/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Isotiocianatos/metabolismo , Compostos de Mostarda Nitrogenada/efeitos adversos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/farmacologia , Sulfóxidos
9.
J Biochem Mol Toxicol ; 29(1): 10-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25179160

RESUMO

Cellular induction of reductase enzymes can alter the susceptibility of cells toward drugs and chemicals. In this study, we compared the capacity of a single dose of sodium selenite and 3H-1,2-dithiole-3-thione (D3T) to influence the drug-relevant reducing capacity of HT29 cells over time, and defined the protein-specific contribution to this activity on the basis of selected reaction monitoring mass spectrometry. Thioredoxin reductase 1 (TrxR1) protein levels and activity were inducible up to 2.2-fold by selenium. In contrast, selenium had only a minor influence on prostaglandin reductase 1 (PTGR1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) activity and protein levels. D3T, a strong Nrf2 inducer, induced all the reductases and additionally increased the cytotoxicity of hydroxymethylacylfulvene, a bioreductive DNA-alkylating drug. The data and experimental approaches allow one to define induction potency for reductase enzymes PTGR1, TrxR1, and NQO1 in HT29 cells and link these to changes in drug cytotoxicity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/enzimologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NAD(P)H Desidrogenase (Quinona)/biossíntese , Proteínas de Neoplasias/metabolismo , Selenito de Sódio/farmacologia , Tionas/farmacologia , Tiofenos/farmacologia , Tiorredoxina Redutase 1/biossíntese , Oligoelementos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Indução Enzimática/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo
10.
Chem Res Toxicol ; 27(3): 377-86, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24383545

RESUMO

Diets enriched with bioactive food components trigger molecular changes in cells that may contribute to either health-promoting or adverse effects. Recent technological advances in high-throughput data generation allow for observing systems-wide molecular responses to cellular perturbations with nontoxic and dietary-relevant doses while considering the intrinsic differences between cancerous and noncancerous cells. In this chemical profile, we compared molecular responses of the colon cancer cell line HT29 and a noncancerous colon epithelial cell line (HCEC) to two widely encountered food components, sulforaphane and selenium. We conducted this comparison by generating new transcriptome data by microarray gene-expression profiling, analyzing them statistically on the single gene, network, and functional pathway levels, and integrating them with protein expression data. Sulforaphane and selenium, at doses that did not inhibit the growth of the tested cells, induced or repressed the transcription of a limited number of genes in a manner distinctly dependent on the chemical and the cell type. The genes that most strongly responded in cancer cells were observed after treatment with sulforaphane and were members of the aldo-keto reductase (AKR) superfamily. These genes were in high agreement in terms of fold change with their corresponding proteins (correlation coefficient r(2) = 0.98, p = 0.01). Conversely, selenium had little influence on the cancer cells. In contrast, in noncancerous cells, selenium induced numerous genes involved in apoptotic, angiogenic, or tumor proliferation pathways, whereas the influence of sulforaphane was very limited. These findings contribute to defining the significance of cell type in interpreting human cellular transcriptome-level responses to exposures to natural components of the diet.


Assuntos
Isotiocianatos/toxicidade , Selênio/toxicidade , Transcriptoma/efeitos dos fármacos , 20-Hidroxiesteroide Desidrogenases/genética , 20-Hidroxiesteroide Desidrogenases/metabolismo , Linhagem Celular , Colo/citologia , Regulação para Baixo/efeitos dos fármacos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HT29 , Humanos , Isotiocianatos/química , Marcação por Isótopo , Redes e Vias Metabólicas/efeitos dos fármacos , Análise de Componente Principal , Selênio/química , Sulfóxidos , Regulação para Cima/efeitos dos fármacos
11.
Toxicol In Vitro ; 23(4): 704-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19233257

RESUMO

High-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking has the ability to monitor the ligand-dependent dimerization of the human estrogen receptor alpha ligand binding domain (hERalpha LBD) in solution. Because only ER ligands enhance the homodimer abundance, we evaluated the ability of this label-free approach for identifying endocrine disrupting compounds (EDCs) in a high-throughput manner. This was achieved by combining an automated liquid handler with an automated MS acquisition procedure, which allowed a five-fold gain in operator time compared to a fully manual approach. To detect ligand binding with enough confidence, the receptor has to be incubated with at least a 10 microM concentration of the test compound. Based on the increase of the measured homodimer intensity, eight compounds with a relative binding affinity (RBA, relative to the natural hormone estradiol) >7% were identified as ER ligands among the 28 chemicals tested. Two other compounds, quercetin and 4-tert-amylphenol, were also identified as ER ligands, although their RBAs have been reported to be only 0.01% and 0.000055%, respectively. This suggests that these two ligands have a higher affinity for hERalpha LBD than reported in the literature. The high-mass MALDI approach thus allows identifying high affinity EDCs in an efficient way.


Assuntos
Disruptores Endócrinos/farmacologia , Receptor alfa de Estrogênio/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sítios de Ligação , Dimerização , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligantes
12.
Anal Chem ; 80(20): 7833-9, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18778086

RESUMO

Many drugs and chemicals exert their biological effect by modulating protein-protein interactions. In vitro approaches to characterize these mechanisms are often based on indirect measurements (e.g., fluorescence). Here, we used mass spectrometry (MS) to directly monitor the effect of small-molecule ligands on the binding of a coactivator peptide (SRC1) by the human estrogen receptor alpha ligand binding domain (hERalpha LBD). Nanoelectrospray mass spectrometry (nanoESI-MS) and high-mass matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking were employed to follow these processes. The chemical cross-linking protocol used prior to high-mass MALDI analysis allows detection of intact noncovalent complexes. The binding of intact hERalpha LBD homodimer with two coactivator peptides was detected with nanoESI-MS and high-mass MALDI-MS only in the presence of an agonist ligand. Furthermore, high-mass MALDI-MS revealed an increase of the homodimer abundance after incubating the receptor with a ligand, independent of the ligand character (i.e., agonist, antagonist). The binding characteristics of the compounds tested by MS correlate very well with their biological activity reported by cell-based assays. High-mass MALDI appears to be an efficient and simple tool for directly monitoring ligand regulation mechanisms involved in protein-protein interactions. Furthermore, the combination of both MS methods allows identifying and characterizing endocrine-disrupting compounds or new drug compounds in an efficient way.


Assuntos
Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Sequência de Aminoácidos , Dimerização , Disruptores Endócrinos/química , Receptor alfa de Estrogênio/agonistas , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/química , Humanos , Ligantes , Espectrometria de Massas , Peptídeos/química , Peptídeos/metabolismo , Farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
13.
J Am Soc Mass Spectrom ; 19(3): 332-43, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18083584

RESUMO

We present a comparison of three different electrospray-based ionization techniques for the investigation of noncovalent complexes with mass spectrometry. The features and characteristics of standard electrospray ionization (ESI), chip-based nanoESI, and electrosonic spray ionization (ESSI) mounted onto a hybrid quadrupole time-of-flight mass spectrometer were compared in their performance to determine the dissociation constant (KD) of the model system hen egg white lysozyme (HEWL) binding to N,N',N''-triacetylchitotriose (NAG3). The best KD value compared with solution data were found for ESSI, 19.4 +/- 3.6 microM. Then, we determined the KDs of the two nucleotide binding sites of adenylate kinase (AK), where we obtained KDs of 2.2 +/- 0.8 microM for the first and 19.5 +/- 8.0 microM for the second binding site using ESSI. We found a weak charge state dependence of the KD for both protein-ligand systems, where for all ionization techniques the KD value decreases with increasing charge state. We demonstrate that ESSI is very gentle and insensitive to instrumental parameters, and the KD obtained is in good agreement with solution phase results from the literature. In addition, we tried to determine the KD for the lymphocyte-specific kinase LCK binding to a kinase inhibitor using nanoESI due to the very low amount of sample available. In this case, we found KD values with a strong charge state dependence, which were in no case close to literature values for solution phase.


Assuntos
Ligantes , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Adenilato Quinase/química , Adenilato Quinase/metabolismo , Animais , Galinhas , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Muramidase/química , Muramidase/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas/metabolismo , Titulometria , Trissacarídeos/química , Trissacarídeos/metabolismo
14.
Protein Sci ; 16(5): 938-46, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17400923

RESUMO

In the present report, a method based on chip-based nanoelectrospray mass spectrometry (nanoESI-MS) is described to detect noncovalent ligand binding to the human estrogen receptor alpha ligand-binding domain (hERalpha LBD). This system represents an important environmental interest, because a wide variety of molecules, known as endocrine disruptors, can bind to the estrogen receptor (ER) and induce adverse health effects in wildlife and humans. Using proper experimental conditions, the nanoESI-MS approach allowed for the detection of specific ligand interactions with hERalpha LBD. The relative gas-phase stability of selected hERalpha LBD-ligand complexes did not mirror the binding affinity in solution, a result that demonstrates the prominent role of hydrophobic contacts for stabilizing ER-ligand complexes in solution. The best approach to evaluate relative solution-binding affinity by nanoESI-MS was to perform competitive binding experiments with 17beta-estradiol (E2) used as a reference ligand. Among the ligands tested, the relative binding affinity for hERalpha LBD measured by nanoESI-MS was 4-hydroxtamoxifen approximately diethylstilbestrol > E2 >> genistein >> bisphenol A, consistent with the order of the binding affinities in solution. The limited reproducibility of the bound to free protein ratio measured by nanoESI-MS for this system only allowed the binding constants (K(d)) to be estimated (low nanomolar range for E2). The specificity of nanoESI-MS combined with its speed (1 min/ligand), low sample consumption (90 pmol protein/ligand), and its sensitivity for ligand (30 ng/mL) demonstrates that this technique is a promising method for screening suspected endocrine disrupting compounds and to qualitatively evaluate their binding affinity.


Assuntos
Disruptores Endócrinos/química , Receptor alfa de Estrogênio/química , Ligantes , Espectrometria de Massas por Ionização por Electrospray/métodos , Disruptores Endócrinos/análise , Disruptores Endócrinos/metabolismo , Receptor alfa de Estrogênio/metabolismo , Humanos , Nanotecnologia/métodos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA