Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(6): eade2727, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763666

RESUMO

Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.


Assuntos
Infecções por Paramyxoviridae , Proteínas Virais de Fusão , Humanos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Proteína HN/química , Proteína HN/metabolismo , Receptores de Superfície Celular , Internalização do Vírus
2.
Nat Commun ; 13(1): 6439, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307480

RESUMO

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.


Assuntos
COVID-19 , Sarampo , Animais , Humanos , Vírus do Sarampo , SARS-CoV-2 , COVID-19/prevenção & controle , Sarampo/prevenção & controle , Proteínas Virais de Fusão/metabolismo , Peptídeos/farmacologia , Macaca fascicularis/metabolismo
3.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609969

RESUMO

The capacity of respiratory viruses to undergo evolution within the respiratory tract raises the possibility of evolution under the selective pressure of the host environment or drug treatment. Long-term infections in immunocompromised hosts are potential drivers of viral evolution and development of infectious variants. We showed that intrahost evolution in chronic human parainfluenza virus 3 (HPIV3) infection in immunocompromised individuals elicited mutations that favored viral entry and persistence, suggesting that similar processes may operate across enveloped respiratory viruses. We profiled longitudinal HPIV3 infections from 2 immunocompromised individuals that persisted for 278 and 98 days. Mutations accrued in the HPIV3 attachment protein hemagglutinin-neuraminidase (HN), including the first in vivo mutation in HN's receptor binding site responsible for activating the viral fusion process. Fixation of this mutation was associated with exposure to a drug that cleaves host-cell sialic acid moieties. Longitudinal adaptation of HN was associated with features that promote viral entry and persistence in cells, including greater avidity for sialic acid and more active fusion activity in vitro, but not with antibody escape. Long-term infection thus led to mutations promoting viral persistence, suggesting that host-directed therapeutics may support the evolution of viruses that alter their biophysical characteristics to persist in the face of these agents in vivo.


Assuntos
Hospedeiro Imunocomprometido , Pneumopatias/virologia , Pulmão/virologia , Vírus da Parainfluenza 3 Humana/metabolismo , Infecções por Paramyxoviridae/virologia , Adulto , Sítios de Ligação , Análise Mutacional de DNA , Feminino , Frequência do Gene , Doença Enxerto-Hospedeiro/tratamento farmacológico , Células HEK293 , Humanos , Leucemia Mieloide Aguda , Mutação , Ácido Micofenólico/administração & dosagem , Ácido N-Acetilneuramínico/química , Vírus da Parainfluenza 3 Humana/genética , Infecções por Paramyxoviridae/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , Receptores Virais/metabolismo , Sirolimo/administração & dosagem , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Adulto Jovem
4.
ACS Nano ; 15(8): 12794-12803, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34291895

RESUMO

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Proteínas Virais de Fusão , Antivirais/farmacologia , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Lipídeos/farmacologia
5.
mBio ; 12(3): e0079921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061592

RESUMO

Measles virus (MeV) bearing a single amino acid change in the fusion protein (F)-L454W-was isolated from two patients who died of MeV central nervous system (CNS) infection. This mutation in F confers an advantage over wild-type virus in the CNS, contributing to disease in these patients. Using murine ex vivo organotypic brain cultures and human induced pluripotent stem cell-derived brain organoids, we show that CNS adaptive mutations in F enhance the spread of virus ex vivo. The spread of virus in human brain organoids is blocked by an inhibitory peptide that targets F, confirming that dissemination in the brain tissue is attributable to F. A single mutation in MeV F thus alters the fusion complex to render MeV more neuropathogenic. IMPORTANCE Measles virus (MeV) infection can cause serious complications in immunocompromised individuals, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE), another severe central nervous system (CNS) complication, develop even in the face of a systemic immune response. Both MIBE and SSPE are relatively rare but lethal. It is unclear how MeV causes CNS infection. We introduced specific mutations that are found in MIBE or SSPE cases into the MeV fusion protein to test the hypothesis that dysregulation of the viral fusion complex-comprising F and the receptor binding protein, H-allows virus to spread in the CNS. Using metagenomic, structural, and biochemical approaches, we demonstrate that altered fusion properties of the MeV H-F fusion complex permit MeV to spread in brain tissue.


Assuntos
Encéfalo/virologia , Vírus do Sarampo/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/patologia , Doenças do Sistema Nervoso Central/virologia , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Masculino , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Metagenômica , Camundongos , Neurônios/virologia , Organoides/citologia , Organoides/virologia , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/classificação , Proteínas Virais de Fusão/metabolismo
6.
J Am Chem Soc ; 143(15): 5958-5966, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825470

RESUMO

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with ß-amino acid residues to generate α/ß-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/ß-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.


Assuntos
Lipopeptídeos/farmacologia , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções Respiratórias/patologia , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Colesterol/química , Desenho de Fármacos , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Vírus da Parainfluenza 3 Humana/isolamento & purificação , Multimerização Proteica , Ratos , Infecções Respiratórias/virologia , Distribuição Tecidual , Temperatura de Transição , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA