Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 597(7876): 370-375, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526706

RESUMO

Droughts and climate-change-driven warming are leading to more frequent and intense wildfires1-3, arguably contributing to the severe 2019-2020 Australian wildfires4. The environmental and ecological impacts of the fires include loss of habitats and the emission of substantial amounts of atmospheric aerosols5-7. Aerosol emissions from wildfires can lead to the atmospheric transport of macronutrients and bio-essential trace metals such as nitrogen and iron, respectively8-10. It has been suggested that the oceanic deposition of wildfire aerosols can relieve nutrient limitations and, consequently, enhance marine productivity11,12, but direct observations are lacking. Here we use satellite and autonomous biogeochemical Argo float data to evaluate the effect of 2019-2020 Australian wildfire aerosol deposition on phytoplankton productivity. We find anomalously widespread phytoplankton blooms from December 2019 to March 2020 in the Southern Ocean downwind of Australia. Aerosol samples originating from the Australian wildfires contained a high iron content and atmospheric trajectories show that these aerosols were likely to be transported to the bloom regions, suggesting that the blooms resulted from the fertilization of the iron-limited waters of the Southern Ocean. Climate models project more frequent and severe wildfires in many regions1-3. A greater appreciation of the links between wildfires, pyrogenic aerosols13, nutrient cycling and marine photosynthesis could improve our understanding of the contemporary and glacial-interglacial cycling of atmospheric CO2 and the global climate system.


Assuntos
Monitoramento Ambiental , Eutrofização , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Incêndios Florestais/estatística & dados numéricos , Aerossóis/análise , Aerossóis/química , Atmosfera/química , Austrália , Clorofila A/análise , Imagens de Satélites , Estações do Ano , Fuligem/análise
2.
Nat Commun ; 10(1): 4960, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31673108

RESUMO

Despite recent advances in observational data coverage, quantitative constraints on how different physical and biogeochemical processes shape dissolved iron distributions remain elusive, lowering confidence in future projections for iron-limited regions. Here we show that dissolved iron is cycled rapidly in Pacific mode and intermediate water and accumulates at a rate controlled by the strongly opposing fluxes of regeneration and scavenging. Combining new data sets within a watermass framework shows that the multidecadal dissolved iron accumulation is much lower than expected from a meta-analysis of iron regeneration fluxes. This mismatch can only be reconciled by invoking significant rates of iron removal  to balance iron regeneration, which imply generation of authigenic particulate iron pools. Consequently, rapid internal cycling of iron, rather than its physical transport, is the main control on observed iron stocks within intermediate waters globally and upper ocean iron limitation will be strongly sensitive to subtle changes to the internal cycling balance.

3.
Front Microbiol ; 10: 1566, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354666

RESUMO

Heme b is an iron-containing co-factor in hemoproteins. Heme b concentrations are low (<1 pmol L-1) in iron limited phytoplankton in cultures and in the field. Here, we determined heme b in marine particulate material (>0.7 µm) from the North Atlantic Ocean (GEOVIDE cruise - GEOTRACES section GA01), which spanned several biogeochemical regimes. We examined the relationship between heme b abundance and the microbial community composition, and its utility for mapping iron limited phytoplankton. Heme b concentrations ranged from 0.16 to 5.1 pmol L-1 (median = 2.0 pmol L-1, n = 62) in the surface mixed layer (SML) along the cruise track, driven mainly by variability in biomass. However, in the Irminger Basin, the lowest heme b levels (SML: median = 0.53 pmol L-1, n = 12) were observed, whilst the biomass was highest (particulate organic carbon, median = 14.2 µmol L-1, n = 25; chlorophyll a: median = 2.0 nmol L-1, n = 23) pointing to regulatory mechanisms of the heme b pool for growth conservation. Dissolved iron (DFe) was not depleted (SML: median = 0.38 nmol L-1, n = 11) in the Irminger Basin, but large diatoms (Rhizosolenia sp.) dominated. Hence, heme b depletion and regulation is likely to occur during bloom progression when phytoplankton class-dependent absolute iron requirements exceed the available ambient concentration of DFe. Furthermore, high heme b concentrations found in the Iceland Basin and Labrador Sea (median = 3.4 pmol L-1, n = 20), despite having similar DFe concentrations to the Irminger Basin, were attributed to an earlier growth phase of the extant phytoplankton populations. Thus, heme b provides a snapshot of the cellular activity in situ and could both be used as indicator of iron limitation and contribute to understanding phytoplankton adaptation mechanisms to changing iron supplies.

4.
Talanta ; 202: 600-609, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31171227

RESUMO

The isotopes of thorium (Th) and neodymium (Nd) are used as tracers in oceanography, and are key parameters in the international GEOTRACES program. The very low concentrations of Th and Nd as well as the reactive nature of Th isotopes makes the analysis of seawater samples a complex process. Analysis requires time-consuming pre-concentration from over 5 L of seawater. We describe a method to simultaneously pre-concentrate dissolved Th and Nd from acidified seawater samples using the Nobias® PA1L chelating resin. Prior to pre-concentration, hydrofluoric acid is added to the sample to stabilise Th, ammonium acetate buffer added (0.05 M), pH adjusted to 4.75, and then finally the prepared sample is pumped through the Nobias resin at a rate of 15 ml min-1. Up to 6 samples can be processed simultaneously. Following elution in 3 M HNO3, both elements are chromatographically separated and determined using Inductively Coupled Plasma Mass Spectrometry. Oxidation of the sample between all column separation steps, including after the initial Nobias resin, is important for obtaining maximum elemental recoveries. The method has >90% recovery with blank levels typically <10 pg for 232Th and <70 pg for Nd. Accuracy is excellent, as our reported values generally agree within 1% of the GEOTRACES intercalibration standards. The long-term analysis of these materials also indicates excellent reproducibility. The pre-concentration of Th and Nd using the Nobias resin is a time saving option compared to the widely used iron co-precipitation technique. Sample handling is also reduced, decreasing the risk of sample contamination. The simplicity of our suggested pre-concentration procedure makes it possible to be applied at sea.

5.
Sci Adv ; 5(5): eaau7671, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31049393

RESUMO

Atmospheric deposition is a source of potentially bioavailable iron (Fe) and thus can partially control biological productivity in large parts of the ocean. However, the explanation of observed high aerosol Fe solubility compared to that in soil particles is still controversial, as several hypotheses have been proposed to explain this observation. Here, a statistical analysis of aerosol Fe solubility estimated from four models and observations compiled from multiple field campaigns suggests that pyrogenic aerosols are the main sources of aerosols with high Fe solubility at low concentration. Additionally, we find that field data over the Southern Ocean display a much wider range in aerosol Fe solubility compared to the models, which indicate an underestimation of labile Fe concentrations by a factor of 15. These findings suggest that pyrogenic Fe-containing aerosols are important sources of atmospheric bioavailable Fe to the open ocean and crucial for predicting anthropogenic perturbations to marine productivity.


Assuntos
Ferro/química , Aerossóis , Oceano Atlântico , Atmosfera/química , Poeira , Óxido Ferroso-Férrico/química , Oceano Índico , Modelos Químicos , Concentração Osmolar , Solo/química , Solubilidade
6.
Nature ; 543(7643): 51-59, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28252066

RESUMO

The micronutrient iron is now recognized to be important in regulating the magnitude and dynamics of ocean primary productivity, making it an integral component of the ocean's biogeochemical cycles. In this Review, we discuss how a recent increase in observational data for this trace metal has challenged the prevailing view of the ocean iron cycle. Instead of focusing on dust as the major iron source and emphasizing iron's tight biogeochemical coupling to major nutrients, a more complex and diverse picture of the sources of iron, its cycling processes and intricate linkages with the ocean carbon and nitrogen cycles has emerged.


Assuntos
Organismos Aquáticos/metabolismo , Ferro/metabolismo , Oceanos e Mares , Água do Mar/química , Ciclo do Carbono , Ciclo do Nitrogênio , Análise Espaço-Temporal , Oligoelementos/metabolismo
7.
Curr Biol ; 26(19): R884-R887, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27728790

RESUMO

Iron limits phytoplankton growth in large areas of the Southern Ocean. A new study shows that Antarctic krill play a crucial role in the recycling of iron in the iron-limited waters.


Assuntos
Euphausiacea , Ferro/análise , Animais , Regiões Antárticas , Alimentos , Fitoplâncton
8.
J Autom Methods Manag Chem ; 2005: 37-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-18924627

RESUMO

A flow-injection (FI)-based instrument under LabVIEW control for monitoring iron in marine waters is described. The instrument incorporates a miniature, low-power photomultiplier tube (PMT), and a number of microelectric and solenoid actuated valves and peristaltic pumps. The software allows full control of all flow injection components and processing of the data from the PMT. The optimised system is capable of 20 injections per hour, including preconcentration and wash steps. The detection limit (3 sd of the blank) is 21 pM at sea and the linear range is 21-2000 pM with a 60-second sample load time. Typical precision between replicate FI peaks is 5.9 +/- 3.2 % (n =4) over the linear range.

9.
Environ Sci Technol ; 36(21): 4600-7, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12433170

RESUMO

A shipboard-deployable, flow-injection (FI) based instrument for monitoring iron(II) in surface marine waters is described. It incorporates a miniature, low-power photon-counting head for measuring the light emitted from the iron(II)-catalyzed chemiluminescence (CL) luminol reaction. System control, signal acquisition, and data processing are performed in a graphical programming environment. The limit of detection for iron(II) is in the range 8-12 pmol L(-1) (based on 3 s of the blank), and the precision over the range 8-1000 pmol L(-1) varies between 0.9 and 7.6% (n = 4). Results from a day-night deployment during a north-to-south transect of the Atlantic Ocean and a daytime transect in the Sub-Antarctic Front are presented together with ancillary temperature, salinity, and irradiance data. The generic nature of the components used to assemble the instrument make the technology readily transferable to other laboratories and the modular construction makes it easy to adapt the system for use with other CL chemistries.


Assuntos
Ferro/análise , Poluentes da Água/análise , Automação , Medições Luminescentes , Sensibilidade e Especificidade , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA