Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vaccine ; 37(2): 333-342, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30522906

RESUMO

A human cytomegalovirus (HCMV) vaccine to prevent infection and/or reduce disease associated with congenital infection or visceral disease in transplant recipients is a high priority, but has remained elusive. We created a disabled infectious single cycle rhesus CMV (RhCMV) deleted for glycoprotein L (gL) and the MHC class I immune evasion genes Rh178 and Rh182-189, and restored its epithelial cell tropism by inserting the Rh128-131A genes. The resulting virus, RhCMVRΔgL/178/182-189, was used to vaccinate rhesus monkeys intramuscularly and was compared with vaccination of animals with soluble RhCMV glycoprotein B (gB) in alum/monophosphoryl lipid A or with PBS as a control. At 4 weeks after the second vaccination, an increased frequency of RhCMV-specific CD8 T cells was detected in animals vaccinated with the RhCMVRΔgL/178/182-189 vaccine compared to animals vaccinated with soluble gB. In contrast, monkeys vaccinated with soluble gB had 20-fold higher gB antibody titers than animals vaccinated with RhCMVRΔgL/178/182-189. Titers of neutralizing antibody to RhCMV infection of fibroblasts were higher in animals vaccinated with gB compared with RhCMVRΔgL/178/182-189. Following vaccination, monkeys were challenged subcutaneously with RhCMV UCD59, a low passage virus propagated in monkey kidney epithelial cells. All animals became infected after challenge; however, the frequency of RhCMV detection in the blood was reduced in monkeys vaccinated with soluble gB compared with those vaccinated with RhCMVRΔgL/178/182-189. The frequency of challenge virus shedding in the urine and saliva and the RhCMV copy number shed at these sites was not different in animals vaccinated with RhCMVRΔgL/178/182-189 or soluble gB compared with those that received PBS before challenge. Although the RhCMVRΔgL/178/182-189 vaccine was superior in inducing cellular immunity to RhCMV, it induced lower titers of neutralizing antibody and antibody to gB than the soluble gB vaccine; after challenge, animals vaccinated with soluble gB had a lower frequency of virus detection in the blood than those vaccinated with RhCMVRΔgL/178/182-189.


Assuntos
Infecções por Citomegalovirus/prevenção & controle , Citomegalovirus/imunologia , Vírus Defeituosos/imunologia , Deleção de Genes , Genes MHC Classe I , Evasão da Resposta Imune/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/imunologia , DNA Viral/sangue , Vírus Defeituosos/genética , Macaca mulatta , Vacinação/métodos , Proteínas do Envelope Viral/genética , Replicação Viral
2.
PLoS Pathog ; 7(10): e1002308, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22028652

RESUMO

Epstein-Barr virus (EBV) is a human lymphocryptovirus that is associated with several malignancies. Elevated EBV DNA in the blood is observed in transplant recipients prior to, and at the time of post-transplant lymphoproliferative disease; thus, a vaccine that either prevents EBV infection or lowers the viral load might reduce certain EBV malignancies. Two major approaches have been suggested for an EBV vaccine- immunization with either EBV glycoprotein 350 (gp350) or EBV latency proteins (e.g. EBV nuclear antigens [EBNAs]). No comparative trials, however, have been performed. Rhesus lymphocryptovirus (LCV) encodes a homolog for each gene in EBV and infection of monkeys reproduces the clinical, immunologic, and virologic features of both acute and latent EBV infection. We vaccinated rhesus monkeys at 0, 4 and 12 weeks with (a) soluble rhesus LCV gp350, (b) virus-like replicon particles (VRPs) expressing rhesus LCV gp350, (c) VRPs expressing rhesus LCV gp350, EBNA-3A, and EBNA-3B, or (d) PBS. Animals vaccinated with soluble gp350 produced higher levels of antibody to the glycoprotein than those vaccinated with VRPs expressing gp350. Animals vaccinated with VRPs expressing EBNA-3A and EBNA-3B developed LCV-specific CD4 and CD8 T cell immunity to these proteins, while VRPs expressing gp350 did not induce detectable T cell immunity to gp350. After challenge with rhesus LCV, animals vaccinated with soluble rhesus LCV gp350 had the best level of protection against infection based on seroconversion, viral DNA, and viral RNA in the blood after challenge. Surprisingly, animals vaccinated with gp350 that became infected had the lowest LCV DNA loads in the blood at 23 months after challenge. These studies indicate that gp350 is critical for both protection against infection with rhesus LCV and for reducing the viral load in animals that become infected after challenge. Our results suggest that additional trials with soluble EBV gp350 alone, or in combination with other EBV proteins, should be considered to reduce EBV infection or virus-associated malignancies in humans.


Assuntos
Infecções por Herpesviridae/virologia , Lymphocryptovirus/patogenicidade , Macaca mulatta/virologia , Glicoproteínas de Membrana/imunologia , Infecções Tumorais por Vírus/virologia , Vacinas Virais/administração & dosagem , Animais , DNA Viral/sangue , Modelos Animais de Doenças , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/imunologia , Interações Hospedeiro-Patógeno , Lymphocryptovirus/imunologia , Infecções Tumorais por Vírus/genética , Infecções Tumorais por Vírus/imunologia , Carga Viral , Latência Viral , Replicação Viral
3.
J Virol ; 85(5): 2089-99, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21191007

RESUMO

Rhesus cytomegalovirus (RhCMV), the homolog of human cytomegalovirus (HCMV), serves as a model for understanding the pathogenesis of HCMV and for developing candidate vaccines. In order to develop a replication-defective virus as a vaccine candidate, we constructed RhCMV with glycoprotein L (gL) deleted. RhCMV gL was essential for viral replication, and virus with gL deleted could only replicate in cells expressing RhCMV gL. Noncomplementing cells infected with RhCMV with gL deleted released intact, noninfectious RhCMV particles that were indistinguishable from wild-type RhCMV by electron microscopy and could be rescued by treatment of cells with polyethylene glycol. In addition, noncomplementing cells infected with RhCMV with gL deleted produced levels of gB, the major target of neutralizing antibodies, at levels similar to those observed in cells infected with wild-type RhCMV. Since RhCMV and HCMV gL share 53% amino acid identity, we determined whether the two proteins could complement the heterologous virus. Cells transfected with an HCMV bacterial artificial chromosome with gL deleted yielded virus that could replicate in human cells expressing HCMV gL. This is the second HCMV mutant with an essential glycoprotein deleted that has been complemented in cell culture. Finally, we found that HCMV gL could not complement the replication of RhCMV with gL deleted and that RhCMV gL could not complement the replication of HCMV with gL deleted. These data indicate that RhCMV and HCMV gL are both essential for replication of their corresponding viruses and, although the two gLs are highly homologous, they are unable to complement each another.


Assuntos
Infecções por Citomegalovirus/veterinária , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Doenças dos Primatas/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Humanos , Macaca mulatta , Proteínas do Envelope Viral , Proteínas Virais/genética , Virulência , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA