Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(20): e0115222, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36173189

RESUMO

Bats are recognized as important reservoirs of viruses deadly to other mammals, including humans. These infections are typically nonpathogenic in bats, raising questions about host response differences that might exist between bats and other mammals. Tetherin is a restriction factor which inhibits the release of a diverse range of viruses from host cells, including retroviruses, coronaviruses, filoviruses, and paramyxoviruses, some of which are deadly to humans and transmitted by bats. Here, we characterize the tetherin genes from 27 bat species, revealing that they have evolved under strong selective pressure, and that fruit bats and vesper bats express unique structural variants of the tetherin protein. Tetherin was widely and variably expressed across fruit bat tissue types and upregulated in spleen tissue when stimulated with Toll-like receptor agonists. The expression of two computationally predicted splice isoforms of fruit bat tetherin was verified. We identified an additional third unique splice isoform which includes a C-terminal region that is not homologous to known mammalian tetherin variants but was functionally capable of restricting the release of filoviral virus-like particles. We also report that vesper bats possess and express at least five tetherin genes, including structural variants, more than any other mammal reported to date. These findings support the hypothesis of differential antiviral gene evolution in bats relative to other mammals. IMPORTANCE Bats are an important host of various viruses which are deadly to humans and other mammals but do not cause outward signs of illness in bats. Furthering our understanding of the unique features of the immune system of bats will shed light on how they tolerate viral infections, potentially informing novel antiviral strategies in humans and other animals. This study examines the antiviral protein tetherin, which prevents viral particles from escaping their host cell. Analysis of tetherin from 27 bat species reveals that it is under strong evolutionary pressure, and we show that multiple bat species have evolved to possess more tetherin genes than other mammals, some of which encode structurally unique tetherins capable of activity against different viral particles. These data suggest that bat tetherin plays a potentially broad and important role in the management of viral infections in bats.


Assuntos
Quirópteros , Viroses , Vírus , Humanos , Animais , Antígeno 2 do Estroma da Médula Óssea/genética , Antivirais , Receptores Toll-Like
2.
Sci Total Environ ; 841: 156699, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710009

RESUMO

Urban-living wildlife can be exposed to metal contaminants dispersed into the environment through industrial, residential, and agricultural applications. Metal exposure carries lethal and sublethal consequences for animals; in particular, heavy metals (e.g. arsenic, lead, mercury) can damage organs and act as carcinogens. Many bat species reside and forage in human-modified habitats and could be exposed to contaminants in air, water, and food. We quantified metal concentrations in fur samples from three flying fox species (Pteropus fruit bats) captured at eight sites in eastern Australia. For subsets of bats, we assessed ectoparasite burden, haemoparasite infection, and viral infection, and performed white blood cell differential counts. We examined relationships among metal concentrations, environmental predictors (season, land use surrounding capture site), and individual predictors (species, sex, age, body condition, parasitism, neutrophil:lymphocyte ratio). As expected, bats captured at sites with greater human impact had higher metal loads. At one site with seasonal sampling, bats had higher metal concentrations in winter than in summer, possibly owing to changes in food availability and foraging. Relationships between ectoparasites and metal concentrations were mixed, suggesting multiple causal mechanisms. There was no association between overall metal load and neutrophil:lymphocyte ratio, but mercury concentrations were positively correlated with this ratio, which is associated with stress in other vertebrate taxa. Comparison of our findings to those of previous flying fox studies revealed potentially harmful levels of several metals; in particular, endangered spectacled flying foxes (P. conspicillatus) exhibited high concentrations of cadmium and lead. Because some bats harbor pathogens transmissible to humans and animals, future research should explore interactions between metal exposure, immunity, and infection to assess consequences for bat and human health.


Assuntos
Quirópteros , Mercúrio , Animais , Austrália , Metais , Estações do Ano
3.
NPJ Vaccines ; 6(1): 67, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972565

RESUMO

Vaccines against SARS-CoV-2 are likely to be critical in the management of the ongoing pandemic. A number of candidates are in Phase III human clinical trials, including ChAdOx1 nCoV-19 (AZD1222), a replication-deficient chimpanzee adenovirus-vectored vaccine candidate. In preclinical trials, the efficacy of ChAdOx1 nCoV-19 against SARS-CoV-2 challenge was evaluated in a ferret model of infection. Groups of ferrets received either prime-only or prime-boost administration of ChAdOx1 nCoV-19 via the intramuscular or intranasal route. All ChAdOx1 nCoV-19 administration combinations resulted in significant reductions in viral loads in nasal-wash and oral swab samples. No vaccine-associated adverse events were observed associated with the ChAdOx1 nCoV-19 candidate, with the data from this study suggesting it could be an effective and safe vaccine against COVID-19. Our study also indicates the potential for intranasal administration as a way to further improve the efficacy of this leading vaccine candidate.

4.
Viruses ; 11(12)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847282

RESUMO

Bats are known reservoirs of a wide variety of viruses that rarely result in overt clinical disease in the bat host. However, anthropogenic influences on the landscape and climate can change species assemblages and interactions, as well as undermine host-resilience. The cumulative result is a disturbance of bat-pathogen dynamics, which facilitate spillover events to sympatric species, and may threaten bat communities already facing synergistic stressors through ecological change. Therefore, characterisation of viral pathogens in bat communities provides important basal information to monitor and predict the emergence of diseases relevant to conservation and public health. This study used targeted molecular techniques, serological assays and next generation sequencing to characterise adenoviruses, coronaviruses and paramyxoviruses from 11 species of insectivorous bats within the South West Botanical Province of Western Australia. Phylogenetic analysis indicated complex ecological interactions including virus-host associations, cross-species infections, and multiple viral strains circulating concurrently within selected bat populations. Additionally, we describe the entire coding sequences for five alphacoronaviruses (representing four putative new species), and one novel adenovirus. Results indicate that viral burden (both prevalence and richness) is not homogeneous among species, with Chalinolobus gouldii identified as a key epidemiological element within the studied communities.


Assuntos
Biodiversidade , Quirópteros/virologia , Adenoviridae/classificação , Adenoviridae/genética , Adenoviridae/imunologia , Adenoviridae/isolamento & purificação , Animais , Quirópteros/classificação , Coronavirus/classificação , Coronavirus/genética , Coronavirus/imunologia , Coronavirus/isolamento & purificação , Fezes/virologia , Comportamento Alimentar , Genoma Viral/genética , Paramyxovirinae/classificação , Paramyxovirinae/genética , Paramyxovirinae/imunologia , Paramyxovirinae/isolamento & purificação , Filogenia , Análise de Sequência , Estudos Soroepidemiológicos , Especificidade da Espécie , Proteínas Virais/genética , Proteínas Virais/imunologia , Austrália Ocidental/epidemiologia
5.
J Virol ; 91(23)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931675

RESUMO

Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis.IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection.


Assuntos
Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Fator de Transcrição AP-1/metabolismo , Animais , Linhagem Celular , Quirópteros , Ebolavirus/patogenicidade , Genes fos , Genes jun , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Rim/citologia , Rim/virologia , Fosforilação , Suínos , Fator de Transcrição AP-1/genética , Proteínas Virais , Replicação Viral
6.
Genome Biol ; 15(11): 532, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398248

RESUMO

BACKGROUND: Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). RESULTS: The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. CONCLUSIONS: This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.


Assuntos
Vírus Hendra/genética , Infecções por Henipavirus/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma/genética , Animais , Apoptose/genética , Quirópteros/genética , Quirópteros/virologia , Vírus Hendra/patogenicidade , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Proteômica , Replicação Viral/genética
7.
Vet Microbiol ; 172(3-4): 479-85, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970365

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the aetiological agent of Johne's disease (JD), a chronic granulomatous enteritis that affects ruminants worldwide. While the ability of MAP to cause disease in animals is clear, the role of this bacterium in human inflammatory bowel diseases remains unresolved. Previous whole genome sequencing of MAP isolates derived from human and three animal hosts showed that human isolates were genetically similar and showed a close phylogenetic relationship to one bovine isolate. In contrast, other animal derived isolates were more genetically diverse. The present study aimed to investigate the frequency of this human strain across 52 wild-type MAP isolates, collected predominantly from Australia. A Luminex based SNP genotyping approach was utilised to genotype SNPs that had previously been shown to be specific to the human, bovine or ovine isolate types. Fourteen SNPs were initially evaluated across a reference panel of isolates with known genotypes. A subset of seven SNPs was chosen for analysis within the wild-type collection. Of the seven SNPs, three were found to be unique to paediatric human isolates. No wild-type isolates contain these SNP alleles. Interestingly, and in contrast to the paediatric isolates, three additional adult human isolates (derived from adult Crohn's disease patients) also did not contain these SNP alleles. Furthermore we identified two SNPs, which demonstrate extensive polymorphism within the animal-derived MAP isolates. One of which appears unique to ovine and a single camel isolate. From this study we suggest the existence of genetic heterogeneity between human derived MAP isolates, some of which are highly similar to those derived from bovine hosts, but others of which are more divergent.


Assuntos
Genótipo , Mycobacterium avium subsp. paratuberculosis/genética , Paratuberculose/microbiologia , Animais , Austrália , Bovinos , Humanos , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/epidemiologia , Filogenia , Polimorfismo de Nucleotídeo Único , Ovinos/genética
8.
Anal Biochem ; 392(2): 117-25, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19505431

RESUMO

Analysis of methylated DNA, which refers to 5-methycytosine (5mC) versus cytosine (C) at specific loci in genomic DNA (gDNA), has received increased attention in epigenomics, particularly in the area of cancer biomarkers. Many different methods for analysis of methylated DNA rely on initial reaction of gDNA with concentrated acidic sodium bisulfite to quantitatively convert C to uracil (U) via sulfonation of denatured, single-stranded gDNA under conditions where 5mC is resistant to analogous sulfonation leading to thymine (T). These methods typically employ polymerase chain reaction (PCR) amplification after bisulfite conversion, thereby leading to readily detectable amounts of amplicons where T and C are measured as surrogates for C and 5mC in the original unconverted gDNA. However, incomplete bisulfite conversion of C in gDNA has been reported to be a common source of error in analysis of methylated DNA. Incomplete conversion can be revealed during the course of bisulfite sequencing, which is the generally accepted "gold standard" for analysis of methylated DNA. Previous bisulfite sequencing investigations of conventional predenaturation of gDNA with NaOH followed by the use of bisulfite containing added urea to maintain denaturation and thus mitigate incomplete conversion of C have been reported to give conflicting results. The current study describes a new approach where conventional predenaturation of gDNA with NaOH is instead achieved with formamide and maintains denaturation during subsequent sample handling and sulfonation. This formamide-based method was applied to 46 formalin-fixed/paraffin-embedded (FFPE) biopsy tissue specimens from well-characterized patients with primary prostate cancer. These specimens were representative of difficult-to-analyze samples due to the chemically compromised nature of the gDNA, which was recovered by modifying the protocol for a commercially available total RNA/DNA extraction kit (RecoverALL). An additional novel aspect of this study was analysis of CpG-rich promoter regions of two prostate cancer-related genes: glutathione S-transferase pi (GSTPi) and retinoic acid receptor beta2 (RARbeta2). High-quality bisulfite sequencing results were obtained for both genes in 43 of 46 (93%) specimens. Detection of methylated GSTPi and RARbeta2 genes was significantly associated with primary prostate cancer as compared with the benign prostate (Fisher's exact test, P < 0.001). The sensitivity and specificity of detection of methylated GSTPi and RARbeta2 genes were 86% and 100% and 91% and 100%, respectively. Moreover, the presence of either methylated gene was detected in primary prostate cancer with sensitivity and specificity of 100% and 100%, respectively. The results demonstrated a high degree of reliability of formamide-based denaturation and bisulfite conversion that should extend, generally, to FFPE and other types of samples intended for any analytical method predicated on bisulfite conversion. This pilot study also demonstrated the efficacy of determining methylation of these two genes with high sensitivity and specificity in FFPE biopsy tissue specimens. Moreover, the results showed a highly significant association of methylated GSTPi and RARbeta2 genes with primary prostate cancer. Finally, this improved procedure for determining these two methylated genes may allow the detection of prostate cancer cells in core biopsy specimens with insufficient numbers of cells and poor morphology.


Assuntos
DNA de Neoplasias/química , Formamidas/farmacologia , Genoma Humano , Glutationa S-Transferase pi/genética , Neoplasias da Próstata/genética , Receptores do Ácido Retinoico/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Biomarcadores Tumorais/genética , Biópsia , Metilação de DNA , DNA de Neoplasias/genética , DNA de Neoplasias/isolamento & purificação , Formaldeído , Glutationa S-Transferase pi/química , Humanos , Masculino , Dados de Sequência Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Inclusão em Parafina , Neoplasias da Próstata/patologia , Receptores do Ácido Retinoico/química , Sulfitos
9.
Artigo em Inglês | MEDLINE | ID: mdl-18066869

RESUMO

Methylation of the cytosine (C) ring to form 5-methyl cytosine (MeC) in normally unmethylated CpG-rich regions of promoters in genes is associated with transcriptional silencing. Quantification of MeC is of current interest in findining new biomarkers for cancer. To this end, and for basic research in epigenomics, we have investigated a new method for relatively simple measurement of MeC content by capillary electrophoresis (CE). PCR amplicons for CE analysis are generated from bisulfite-converted DNA [C --> uracil (U)] using fluorescently labeled primers that anneal independent of methylation status. Resultant incorporation of C vs. T at original MeC vs. C positions can lead to separate CE peaks for signal integration that is proportional to MeC content. Furthermore, these PCR products are suitable for additional methylation analyses by sequencing, single-base extension, or TaqMan. Interestingly, PCR using alpha -thio-dCTP led to greater CE separations.


Assuntos
5-Metilcitosina/análise , DNA/isolamento & purificação , Nucleotídeos de Desoxicitosina/química , Reação em Cadeia da Polimerase/métodos , Ilhas de CpG , DNA/análise , Eletroforese Capilar , Humanos , Metilação
10.
J Gen Virol ; 86(Pt 10): 2839-2848, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16186240

RESUMO

Epitopes involved in a protective immune response to Hendra virus (HeV) (Henipavirus, Paramxyoviridae) were investigated by generating five neutralizing monoclonal antibodies (mAbs) to the virus attachment protein (G) of HeV (HeV G) and sequencing of the G gene of groups of neutralization-escape variants selected with each mAb. Amino acid substitutions occurred at eight distinct sites on HeV G. Relationships between these sites were investigated in binding and neutralization assays using heterologous combinations of variants and mAbs. The sites were also mapped to a proposed structural model for the attachment proteins of Paramyxoviridae. Their specific locations and the nature of their interactions with the mAb panel provided the first functional evidence that HeV G in fact resembled the proposed structure. Four sites (aa 183-185, 417, 447 and 570) contributed to a major discontinuous epitope, on the base of the globular head, that was similar to immunodominant virus neutralization sites found in other paramyxoviruses. Amino acid similarity between HeV and Nipah virus was relatively highly conserved at these sites but decreased significantly at the other sites identified in this study. These included another discontinuous epitope on the base of the head region defined by sites aa 289 and 324 and well separated epitopes on the top of the head at sites aa 191-195 and 385-356. The latter epitope corresponded to immunodominant neutralization sites found in Rinderpest virus and Measles virus.


Assuntos
Antígenos Virais/imunologia , Vírus Hendra/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , Vírus Hendra/classificação , Humanos , Testes de Neutralização , Proteínas do Envelope Viral/química
11.
J Immunol Methods ; 264(1-2): 59-68, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12191510

RESUMO

Two commercially available bioreactor systems, CELLine and miniPERM, were evaluated for their ability to support the production of monoclonal antibody (mAb) from a variety of murine hybridoma cell lines. Production and purity of mAbs were compared between the two systems and with mouse ascites tumour fluid generation. The quality and purity of the mAb generated by each method was analysed on SDS-PAGE gels and the antibody immunoreactivity in each case was quantified by indirect ELISA tests. The relative benefits of conventional growth medium (Dulbecco's modified Eagle's media, DMEM) and serum-free medium (hybridoma serum-free media, H-SFM) using the miniPERM system were also analysed, in terms of the amount of antibody produced, cell concentration and specific antibody titre. In all cases, the CELLine units tested gave higher protein concentrations compared to the miniPERM system under the same conditions (means and 95% confidence limits are 4.2+/-0.8 and 2.1+/-0.8 mg/ml, respectively), yet the miniPERM system yielded greater total amounts over a similar culture period (428.7+/-243.3 mg compared to 183.3+/-100.9 mg in the CL-350 CELLine unit). When defined by specific ELISA titre, both bioreactor systems yielded mAb levels that compared favourably with those derived from ascites. In addition, SDS-PAGE analysis indicated that the bioreactor antibody product was relatively free of contaminating protein, whereas ascites tumour fluid preparations displayed significant levels of extraneous protein. This study has shown that both bioreactor systems are acceptable in vitro alternatives to the in vivo production of mAbs in mice.


Assuntos
Anticorpos Monoclonais/biossíntese , Líquido Ascítico/imunologia , Líquido Ascítico/metabolismo , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Animais , Anticorpos Monoclonais/isolamento & purificação , Líquido Ascítico/citologia , Técnicas de Cultura de Células/instrumentação , Linhagem Celular , Sobrevivência Celular/imunologia , Meios de Cultivo Condicionados , Meios de Cultura Livres de Soro , Diálise/instrumentação , Diálise/métodos , Ensaio de Imunoadsorção Enzimática , Feminino , Hibridomas , Camundongos , Camundongos Endogâmicos BALB C , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA