Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(12): 3441-3456, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37814449

RESUMO

Adeno-associated virus (AAV) continues to be the gold standard vector for therapeutic gene delivery and has proven especially useful for treating ocular disease. Intravitreal injection (IVtI) is a promising delivery route because it increases accessibility of gene therapies to larger patient populations. However, data from clinical and non-human primate (NHP) studies utilizing currently available capsids indicate that anatomical barriers to AAV and pre-existing neutralizing antibodies can restrict gene expression to levels that are "sub-therapeutic" in a substantial proportion of patients. Here, we performed a combination of directed evolution in NHPs of an AAV2-based capsid library with simultaneous mutations across six surface-exposed variable regions and rational design to identify novel capsid variants with improved retinal transduction following IVtI. Following two rounds of screening in NHP, enriched variants were characterized in intravitreally injected mice and NHPs and shown to have increased transduction relative to AAV2. Lead capsid variant, P2-V1, demonstrated an increased ability to evade neutralizing antibodies in human vitreous samples relative to AAV2 and AAV2.7m8. Taken together, this study further contributed to our understanding of the selective pressures associated with retinal transduction via the vitreous and identified promising novel AAV capsid variants for clinical consideration.


Assuntos
Anticorpos Neutralizantes , Capsídeo , Humanos , Camundongos , Animais , Dependovirus , Injeções Intravítreas , Transdução Genética , Primatas/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Vetores Genéticos/genética
2.
Mol Ther Methods Clin Dev ; 30: 534-545, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37693946

RESUMO

Usher syndrome is the most common cause of deafness-blindness in the world. Usher syndrome type 1B (USH1B) is associated with mutations in MYO7A. Patients with USH1B experience deafness, blindness, and vestibular dysfunction. In this study, we applied adeno-associated virus (AAV)-mediated gene therapy to the shaker-1 (Myo7a4626SB/4626SB) mouse, a model of USH1B. The shaker-1 mouse has a nonsense mutation in Myo7a, is profoundly deaf throughout life, and has significant vestibular dysfunction. Because of the ∼6.7-kb size of the MYO7A cDNA, a dual-AAV approach was used for gene delivery, which involves splitting human MYO7A cDNA into 5' and 3' halves and cloning them into two separate AAV8(Y733F) vectors. When MYO7A cDNA was delivered to shaker-1 inner ears using the dual-AAV approach, cochlear hair cell survival was improved. However, stereocilium organization and auditory function were not improved. In contrast, in the vestibular system, dual-AAV-mediated MYO7A delivery significantly rescued hair cell stereocilium morphology and improved vestibular function, as reflected in a reduction of circling behavior and improved vestibular sensory-evoked potential (VsEP) thresholds. Our data indicate that dual-AAV-mediated MYO7A expression improves vestibular function in shaker-1 mice and supports further development of this approach for the treatment of disabling dizziness from vestibular dysfunction in USH1B patients.

3.
Adv Exp Med Biol ; 1415: 125-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440024

RESUMO

Myosin VIIA (MYO7A)-associated Usher syndrome type 1B (USH1B) is a severe disorder that impacts the auditory, vestibular, and visual systems of affected patients. Due to the large size (~7.5 kb) of the MYO7A coding sequence, we have designed a dual adeno-associated virus (AAV) vector-based approach for the treatment of USH1B-related vision loss. Due to the added complexity of dual-AAV gene therapy, careful attention must be paid to the protein products expressed following vector recombination. In order to improve the sensitivity and quantifiability of our immunoassays, we adapted our traditional western blot protocol for use with the Jess™ Simple Western System. Following several rounds of testing, we optimized our protocol for the detection of MYO7A in two of our most frequently used sample types, mouse eyes, and infected HEK293 cell lysates.


Assuntos
Miosinas , Síndromes de Usher , Camundongos , Animais , Humanos , Miosinas/genética , Miosinas/metabolismo , Células HEK293 , Síndromes de Usher/genética , Síndromes de Usher/terapia , Miosina VIIa/genética , Mutação
4.
Mol Ther Methods Clin Dev ; 30: 48-64, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37361352

RESUMO

Cone-rod dystrophy 6 (CORD6) is caused by gain-of-function mutations in the GUCY2D gene, which encodes retinal guanylate cyclase-1 (RetGC1). There are currently no treatments available for this autosomal dominant disease, which is characterized by severe, early-onset visual impairment. The purpose of our study was to develop an adeno-associated virus (AAV)-CRISPR-Cas9-based approach referred to as "ablate and replace" and evaluate its therapeutic potential in mouse models of CORD6. This two-vector system delivers (1) CRISPR-Cas9 targeted to the early coding sequence of the wild-type and mutant GUCY2D alleles and (2) a CRISPR-Cas9-resistant cDNA copy of GUCY2D ("hardened" GUCY2D). Together, these vectors knock out ("ablate") expression of endogenous RetGC1 in photoreceptors and supplement ("replace") a healthy copy of exogenous GUCY2D. First, we confirmed that ablation of mutant R838S GUCY2D was therapeutic in a transgenic mouse model of CORD6. Next, we established a proof of concept for "ablate and replace" and optimized vector doses in Gucy2e+/-:Gucy2f-/- and Gucy2f-/- mice, respectively. Finally, we confirmed that the "ablate and replace" approach stably preserved retinal structure and function in a novel knockin mouse model of CORD6, the RetGC1 (hR838S, hWT) mouse. Taken together, our results support further development of the "ablate and replace" approach for treatment of CORD6.

5.
PLoS One ; 18(5): e0285370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37167304

RESUMO

Vascular endothelial cells (VEC) are essential for retinal homeostasis and their dysfunction underlies pathogenesis in diabetic retinopathy (DR) and exudative age-related macular degeneration (AMD). Studies have shown that recombinant adeno-associated virus (rAAV) vectors are effective at delivering new genetic material to neural and glial cells within the retina, but targeting VECs remains challenging. To overcome this limitation, herein we developed rAAV capsid mutant vectors with improved tropism towards retinal VEC. rAAV2/2, 2/2[QuadYF-TV], and rAAV2/9 serotype vectors (n = 9, capsid mutants per serotype) expressing GFP were generated by inserting heptameric peptides (7AA) designed to increase endothelial targeting at positions 588 (2/2 and 2/2[QuadYF-TV] or 589 (2/9) of the virus protein (VP 1-3). The packaging and transduction efficiency of the vectors were assessed in HEK293T and bovine VECs using Fluorescence microscopy and flow cytometry, leading to the identification of one mutant, termed EC5, that showed improved endothelial tropism when inserted into all three capsid serotypes. Intra-ocular and intravenous administration of EC5 mutants in C57Bl/6j mice demonstrated moderately improved transduction of the retinal vasculature, particularly surrounding the optic nerve head, and evidence of sinusoidal endothelial cell transduction in the liver. Most notably, intravenous administration of the rAAV2/2[QuadYF-TV] EC5 mutant led to a dramatic and unexpected increase in cardiac muscle transduction.


Assuntos
Capsídeo , Dependovirus , Camundongos , Animais , Bovinos , Humanos , Capsídeo/metabolismo , Dependovirus/metabolismo , Células Endoteliais , Transdução Genética , Terapia Genética , Células HEK293 , Vetores Genéticos/genética , Retina/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Tropismo
6.
Transl Vis Sci Technol ; 12(2): 2, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36723965

RESUMO

Purpose: To identify challenges and opportunities for the development of treatments for Usher syndrome (USH) type 1B. Methods: In September 2021, the Foundation Fighting Blindness hosted a virtual workshop of clinicians, academic and industry researchers, advocates, and affected individuals and their families to discuss the challenges and opportunities for USH1B treatment development. Results: The workshop began with insights from individuals affected by USH1B. Presentation topics included myosin VIIA protein function in the ear and eye and its role in disease pathology; challenges with the USH1B mouse model most used in disease research to date; new investigations into alternative disease models that may provide closer analogues to USH1B in the human retina, including retinal organoids and large animal models; and learnings from and limitations of available disease natural history data. Participants discussed the need for an open dialogue between researchers and regulators to design USH1B clinical trials with appropriate outcome measures of vision improvement, along with multimodal imaging of the retina and other testing approaches that can help inform trial designs. The workshop concluded with presentations and a roundtable reviewing emerging treatments, including USH1B-targeted genetic augmentation therapy and gene-agnostic approaches. Conclusions: Initiatives like this workshop are important to foster all stakeholders in support of achieving the shared goal of treating and curing USH1B. Translational Relevance: Presentations and discussions focused on overcoming disease modeling and clinical trial design challenges to facilitate development, testing, and implementation of effective USH1B treatments.


Assuntos
Miosinas , Síndromes de Usher , Camundongos , Animais , Humanos , Miosinas/genética , Miosinas/metabolismo , Mutação , Síndromes de Usher/genética , Síndromes de Usher/terapia , Síndromes de Usher/patologia , Miosina VIIa/genética
7.
Mol Ther Methods Clin Dev ; 28: 129-145, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36654798

RESUMO

Mutations in GUCY2D are associated with severe early-onset retinal dystrophy, Leber congenital amaurosis type 1 (LCA1), a leading cause of blindness in children. Despite a high degree of visual disturbance stemming from photoreceptor dysfunction, patients with LCA1 largely retain normal photoreceptor structure, suggesting that they are good candidates for gene replacement therapy. The purpose of this study was to conduct the preclinical and IND-enabling experiments required to support clinical application of AAV5-hGRK1-GUCY2D in patients harboring biallelic recessive mutations in GUCY2D. Preclinical studies were conducted in mice to evaluate the effect of vector manufacturing platforms and transgene species on the therapeutic response. Dose-ranging studies were conducted in cynomolgus monkeys to establish the minimum dose required for efficient photoreceptor transduction. Good laboratory practice (GLP) studies evaluated systemic biodistribution in rats and toxicology in non-human primates (NHPs). These results expanded our knowledge of dose response for an AAV5-vectored transgene under control of the human rhodopsin kinase (hGRK1) promoter in NHPs with respect to photoreceptor transduction and safety and, in combination with the rat biodistribution and mouse efficacy studies, informed the design of a first-in-human clinical study in patients with LCA1.

8.
iScience ; 24(5): 102409, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33997691

RESUMO

A first-in-human clinical trial of gene therapy in Leber congenital amaurosis due to mutations in the GUCY2D gene is underway, and early results are summarized. A recombinant adeno-associated virus serotype 5 (rAAV5) vector carrying the human GUCY2D gene was delivered by subretinal injection to one eye in three adult patients with severe visual loss, nystagmus, but preserved retinal structure. Safety and efficacy parameters were monitored for 9 months post-operatively. No systemic toxicity was detected; there were no serious adverse events, and ocular adverse events resolved. P1 and P2 showed statistically significant rod photoreceptor vision improvement by full-field stimulus testing in the treated eye. P1 also showed improvement in pupillary responses. Visual acuity remained stable from baseline in P1 and P2. P3, however, showed a gain of 0.3 logMAR in the treated eye, indicating greater cone-photoreceptor function. The results show safety and both rod- and cone-mediated efficacy of this therapy.

9.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658343

RESUMO

Adeno-associated viruses (AAVs) have recently emerged as the leading vector for retinal gene therapy. However, AAV vectors which are capable of achieving clinically relevant levels of transgene expression and widespread retinal transduction are still an unmet need. Using rationally designed AAV2-based capsid variants, we investigate the role of capsid hydrophilicity and hydrophobicity as it relates to retinal transduction. We show that hydrophilic, single amino acid (aa) mutations (V387R, W502H, E530K, L583R) in AAV2 negatively impact retinal transduction when heparan sulfate proteoglycan (HSPG) binding remains intact. Conversely, addition of hydrophobic point mutations to an HSPG binding deficient capsid (AAV2ΔHS) lead to increased retinal transduction in both mouse and macaque. Our top performing vector, AAV2(4pMut)ΔHS, achieved robust rod and cone photoreceptor (PR) transduction in macaque, especially in the fovea, and demonstrates the ability to spread laterally beyond the borders of the subretinal injection (SRI) bleb. This study both evaluates biophysical properties of AAV capsids that influence retinal transduction, and assesses the transduction and tropism of a novel capsid variant in a clinically relevant animal model.ImportanceRationally guided engineering of AAV capsids aims to create new generations of vectors with enhanced potential for human gene therapy. By applying rational design principles to AAV2-based capsids, we evaluated the influence of hydrophilic and hydrophobic amino acid (aa) mutations on retinal transduction as it relates to vector administration route. Through this approach we identified a largely deleterious relationship between hydrophilic aa mutations and canonical HSPG binding by AAV2-based capsids. Conversely, the inclusion of hydrophobic aa substitutions on a HSPG binding deficient capsid (AAV2ΔHS), generated a vector capable of robust rod and cone photoreceptor (PR) transduction. This vector AAV2(4pMut)ΔHS also demonstrates a remarkable ability to spread laterally beyond the initial subretinal injection (SRI) bleb, making it an ideal candidate for the treatment of retinal diseases which require a large area of transduction.

10.
Mol Ther ; 29(2): 464-488, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33309881

RESUMO

Hereditary diseases are caused by mutations in genes, and more than 7,000 rare diseases affect over 30 million Americans. For more than 30 years, hundreds of researchers have maintained that genetic modifications would provide effective treatments for many inherited human diseases, offering durable and possibly curative clinical benefit with a single treatment. This review is limited to gene therapy using adeno-associated virus (AAV) because the gene delivered by this vector does not integrate into the patient genome and has a low immunogenicity. There are now five treatments approved for commercialization and currently available, i.e., Luxturna, Zolgensma, the two chimeric antigen receptor T cell (CAR-T) therapies (Yescarta and Kymriah), and Strimvelis (the gammaretrovirus approved for adenosine deaminase-severe combined immunodeficiency [ADA-SCID] in Europe). Dozens of other treatments are under clinical trials. The review article presents a broad overview of the field of therapy by in vivo gene transfer. We review gene therapy for neuromuscular disorders (spinal muscular atrophy [SMA]; Duchenne muscular dystrophy [DMD]; X-linked myotubular myopathy [XLMTM]; and diseases of the central nervous system, including Alzheimer's disease, Parkinson's disease, Canavan disease, aromatic l-amino acid decarboxylase [AADC] deficiency, and giant axonal neuropathy), ocular disorders (Leber congenital amaurosis, age-related macular degeneration [AMD], choroideremia, achromatopsia, retinitis pigmentosa, and X-linked retinoschisis), the bleeding disorder hemophilia, and lysosomal storage disorders.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Animais , Estudos Clínicos como Assunto , Terapia Combinada , Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/terapia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Terapia Genética/tendências , Vetores Genéticos/administração & dosagem , Humanos , Especificidade de Órgãos , Resultado do Tratamento
11.
Gene Ther ; 28(7-8): 447-455, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33244179

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal recessive lysosomal disease caused by defective production of the enzyme α-N-acetylglucosaminidase. It is characterized by severe and complex central nervous system degeneration. Effective therapies will likely target early onset disease and overcome the blood-brain barrier. Modifications of adeno-associated viral (AAV) vector capsids that enhance transduction efficiency have been described in the retina. Herein, we describe for the first time, a transduction assessment of two intracranially administered adeno-associated virus serotype 8 variants, in which specific surface-exposed tyrosine (Y) and threonine (T) residues were substituted with phenylalanine (F) and valine (V) residues, respectively. A double-mutant (Y444 + 733F) and a triple-mutant (Y444 + 733F + T494V) AAV8 were evaluated for their efficacy for the potential treatment of MPS IIIB in a neonatal setting. We evaluated biodistribution and transduction profiles of both variants compared to the unmodified parental AAV8, and assessed whether the method of vector administration would modulate their utility. Vectors were administered through four intracranial routes: six sites (IC6), thalamic (T), intracerebroventricular, and ventral tegmental area into neonatal mice. Overall, we conclude that the IC6 method resulted in the widest biodistribution within the brain. Noteworthy, we demonstrate that GFP intensity was significantly more robust with AAV8 (double Y-F + T-V) compared to AAV8 (double Y-F). This provides proof of concept for the enhanced utility of IC6 administration of the capsid modified AAV8 (double Y-F + T-V) as a valid therapeutic approach for the treatment of MPS IIIB, with further implications for other monogenic diseases.


Assuntos
Capsídeo , Mucopolissacaridose III , Animais , Encéfalo , Dependovirus/genética , Vetores Genéticos/genética , Camundongos , Mucopolissacaridose III/genética , Mucopolissacaridose III/terapia , Distribuição Tecidual , Transdução Genética
12.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107823

RESUMO

Leber congenital amaurosis type nine is an autosomal recessive retinopathy caused by mutations of the NAD+ synthesis enzyme NMNAT1. Despite the ubiquitous expression of NMNAT1, patients do not manifest pathologies other than retinal degeneration. Here we demonstrate that widespread NMNAT1 depletion in adult mice mirrors the human pathology, with selective loss of photoreceptors highlighting the exquisite vulnerability of these cells to NMNAT1 loss. Conditional deletion demonstrates that NMNAT1 is required within the photoreceptor. Mechanistically, loss of NMNAT1 activates the NADase SARM1, the central executioner of axon degeneration, to trigger photoreceptor death and vision loss. Hence, the essential function of NMNAT1 in photoreceptors is to inhibit SARM1, highlighting an unexpected shared mechanism between axonal degeneration and photoreceptor neurodegeneration. These results define a novel SARM1-dependent photoreceptor cell death pathway and identifies SARM1 as a therapeutic candidate for retinopathies.


Assuntos
Proteínas do Domínio Armadillo/genética , Morte Celular , Proteínas do Citoesqueleto/genética , Amaurose Congênita de Leber/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/patologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Amaurose Congênita de Leber/genética , Masculino , Camundongos , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Degeneração Retiniana/genética
13.
Chem Senses ; 45(7): 493-502, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32556127

RESUMO

The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.


Assuntos
Transtornos do Olfato/terapia , Distúrbios do Paladar/terapia , Congressos como Assunto , Terapia Genética , Humanos , Transtornos do Olfato/patologia , Medicina Regenerativa , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Distúrbios do Paladar/patologia
14.
Mol Ther ; 28(6): 1464-1478, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32304666

RESUMO

The majority of inherited retinal diseases (IRDs) are caused by mutations in genes expressed in photoreceptors (PRs). The ideal vector to address these conditions is one that transduces PRs in large areas of retina with the smallest volume/lowest titer possible, and efficiently transduces foveal cones, the cells responsible for acute, daylight vision that are often the only remaining area of functional retina in IRDs. The purpose of our study was to evaluate the retinal tropism and potency of a novel capsid, AAV44.9, and rationally designed derivatives thereof. We found that AAV44.9 and AAV44.9(E531D) transduced retinas of subretinally injected (SRI) mice with higher efficiency than did benchmark AAV5- and AAV8-based vectors. In macaques, highly efficient cone and rod transduction was observed following submacular and peripheral SRI. AAV44.9- and AAV44.9(E531D)-mediated GFP fluorescence extended laterally well beyond SRI bleb margins. Notably, extrafoveal injection (i.e., fovea not detached during surgery) led to transduction of up to 98% of foveal cones. AAV44.9(E531D) efficiently transduced parafoveal and perifoveal cones, whereas AAV44.9 did not. AAV44.9(E531D) was also capable of restoring retinal function to a mouse model of IRD. These novel capsids will be useful for addressing IRDs that would benefit from an expansive treatment area.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Retina/metabolismo , Transdução Genética , Animais , Dependovirus/classificação , Modelos Animais de Doenças , Imunofluorescência , Expressão Gênica , Genes Reporter , Engenharia Genética , Vetores Genéticos/administração & dosagem , Injeções Intraoculares , Macaca fascicularis , Camundongos , Microscopia Confocal , Oftalmoscopia , Regiões Promotoras Genéticas , Células Fotorreceptoras Retinianas Cones/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/patologia , Doenças Retinianas/terapia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transgenes
15.
Mol Neurodegener ; 15(1): 15, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32122372

RESUMO

BACKGROUND: Recombinant adeno-associated virus (rAAV) is widely used in the neuroscience field to manipulate gene expression in the nervous system. However, a limitation to the use of rAAV vectors is the time and expense needed to produce them. To overcome this limitation, we evaluated whether unpurified rAAV vectors secreted into the media following scalable PEI transfection of HEK293T cells can be used in lieu of purified rAAV. METHODS: We packaged rAAV2-EGFP vectors in 30 different wild-type and mutant capsids and subsequently collected the media containing secreted rAAV. Genomic titers of each rAAV vector were assessed and the ability of each unpurified virus to transduce primary mixed neuroglial cultures (PNGCs), organotypic brain slice cultures (BSCs) and the mouse brain was evaluated. RESULTS: There was ~ 40-fold wide variance in the average genomic titers of the rAAV2-EGFP vector packaged in the 30 different capsids, ranging from a low ~ 4.7 × 1010 vector genomes (vg)/mL for rAAV2/5-EGFP to a high of ~ 2.0 × 1012 vg/mL for a capsid mutant of rAAV2/8-EGFP. In PNGC studies, we observed a wide range of transduction efficiency among the 30 capsids evaluated, with the rAAV2/6-EGFP vector demonstrating the highest overall transduction efficiency. In BSC studies, we observed robust transduction by wild-type capsid vectors rAAV2/6, 2/8 and 2/9, and by capsid mutants of rAAV2/1, 2/6, and 2/8. In the in vivo somatic brain transgenesis (SBT) studies, we found that intra-cerebroventricular injection of media containing unpurified rAAV2-EGFP vectors packaged with select mutant capsids resulted in abundant EGFP positive neurons and astrocytes in the hippocampus and forebrain of non-transgenic mice. We demonstrate that unpurified rAAV can express transgenes at equivalent levels to lysate-purified rAAV both in vitro and in vivo. We also show that unpurified rAAV is sufficient to drive tau pathology in BSC and neuroinflammation in vivo, recapitulating previous studies using purified rAAV. CONCLUSIONS: Unpurified rAAV vectors secreted into the media can efficiently transduce brain cells in vitro and in vivo, providing a cost-effective way to manipulate gene expression. The use of unpurified virus will greatly reduce costs of exploratory studies and further increase the utility of rAAV vectors for standard laboratory use.


Assuntos
Dependovirus , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Transdução Genética/métodos , Animais , Encéfalo , Terapia Genética/métodos , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Camundongos , Neuroglia , Neurônios
16.
Hum Gene Ther ; 31(9-10): 565-574, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32220217

RESUMO

A 20-nt long sequence, termed the D-sequence, in the adeno-associated virus (AAV) inverted terminal repeat was observed to share a partial sequence homology with the X-box in the regulatory region of the human leukocyte antigen DRA (HLA-DRA) promoter of the human major histocompatibility complex class II (MHC-II) genes. The D-sequence was also shown to specifically interact with the regulatory factor binding to the X-box (RFX), binding of which to the X-box is a critical step in the MHC-II gene expression, suggesting that D-sequence might compete for RFX transcription factor binding, thereby suppressing expression from the MHC-II promoter. In DNA-mediated transfection experiments, using a reporter gene under the control of the HLA-DRA promoter, D-sequence oligonucleotides were found to inhibit expression of the reporter gene expression in HeLa and 293 cells by ∼93% and 96%, respectively. No inhibition was observed when nonspecific synthetic oligonucleotides were used. D-sequence oligonucleotides had no effect on expression from the cytomegalovirus immediate-early gene promoter. Interferon-γ-mediated activation of MHC-II gene expression was also inhibited by D-sequence oligonucleotides as well as after infection with either the wild-type AAV or transduction with recombinant AAV vectors. These studies suggest that the D-sequence-mediated downregulation of the MHC-II gene expression may be exploited toward the development of novel AAV vectors capable of dampening the host humoral response, which has important implication in the optimal use of these vectors in human gene therapy.


Assuntos
Dependovirus/genética , Antígenos de Histocompatibilidade Classe II/genética , Imunidade Humoral , Sequências Repetidas Terminais , Animais , DNA Viral , Regulação para Baixo , Regulação da Expressão Gênica , Genes MHC da Classe II , Terapia Genética , Vetores Genéticos , Células HEK293 , Antígenos HLA/genética , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas , Fator Regulador X1/genética , Homologia de Sequência
17.
Methods Mol Biol ; 1950: 249-262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783978

RESUMO

Adeno-associated virus (AAV) has emerged as the vector of choice for delivering genes to the retina. Indeed, the first gene therapy to receive FDA approval in the United States is an AAV-based treatment for the inherited retinal disease, Leber congenital amaurosis-2. Voretigene neparvovec (Luxturna™) is delivered to patients via subretinal (SR) injection, an invasive surgical procedure that requires detachment of photoreceptors (PRs) from the retinal pigment epithelium (RPE). It has been reported that subretinal administration of vector under the cone-exclusive fovea leads to a loss of central retinal structure and visual acuity in some patients. Due to its technical difficulty and potential risks, alternatives to SR injection have been explored in primates. Intravitreally (Ivt) delivered AAV transduces inner retina and foveal cones, but with low efficiency. Novel AAV capsid variants identified via rational design or directed evolution have offered only incremental improvements, and have failed to promote pan-inner retinal transduction or significant outer retinal transduction beyond the fovea. Problems with retinal transduction by Ivt-delivered AAV include dilution in the vitreous, potential antibody-mediated neutralization of capsid in this nonimmune privileged space, and the presence of the inner limiting membrane (ILM), a basement membrane separating the vitreous from the neural retina. We have developed an alternative "subILM" injection method that overcomes all three hurdles. Specifically, vector is placed in a surgically induced, hydrodissected space between the ILM and neural retina. We have shown that subILM injection promotes more efficient retinal transduction by AAV than Ivt injection, and results in uniform and extensive transduction of retinal ganglion cells (RGCs) beneath the subILM bleb. We have also demonstrated transduction of Muller glia, ON bipolar cells, and photoreceptors by subILM injection. Our results confirm that the ILM is a major barrier to transduction by AAV in primate retina and that, when it is circumvented, the efficiency and depth to which AAV2 promotes transduction of multiple retinal cell classes is greatly enhanced. Here we describe in detail methods for vector preparation, vector dilution, and subILM injection as performed in macaque (Macaca sp.).


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Retina/metabolismo , Transdução Genética , Animais , Expressão Gênica , Genes Reporter , Injeções , Macaca , Microscopia de Fluorescência , Células Ganglionares da Retina/metabolismo , Transgenes
18.
Hum Gene Ther ; 30(5): 571-589, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30358434

RESUMO

Mutations in GUCY2D, the gene encoding retinal guanylate cyclase-1 (retGC1), are the leading cause of autosomal dominant cone-rod dystrophy (CORD6). Significant progress toward clinical application of gene replacement therapy for Leber congenital amaurosis (LCA) due to recessive mutations in GUCY2D (LCA1) has been made, but a different approach is needed to treat CORD6 where gain of function mutations cause dysfunction and dystrophy. The CRISPR/Cas9 gene editing system efficiently disrupts genes at desired loci, enabling complete gene knockout or homology directed repair. Here, adeno-associated virus (AAV)-delivered CRISPR/Cas9 was used specifically to edit/disrupt this gene's early coding sequence in mouse and macaque photoreceptors in vivo, thereby knocking out retGC1 expression and demonstrably altering retinal function and structure. Neither preexisting nor induced Cas9-specific T-cell responses resulted in ocular inflammation in macaques, nor did it limit GUCY2D editing. The results show, for the first time, the ability to perform somatic gene editing in primates using AAV-CRISPR/Cas9 and demonstrate the viability this approach for treating inherited retinal diseases in general and CORD6 in particular.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Edição de Genes , Guanilato Ciclase/genética , Receptores de Superfície Celular/genética , Retina/metabolismo , Animais , Sequência de Bases , Eletrorretinografia , Genes Reporter , Vetores Genéticos/genética , Guanilato Ciclase/metabolismo , Macaca , Camundongos , Camundongos Knockout , Imagem Molecular/métodos , Regiões Promotoras Genéticas , RNA Guia de Cinetoplastídeos/química , RNA Guia de Cinetoplastídeos/genética , Receptores de Superfície Celular/metabolismo , Retina/patologia
19.
Mol Ther ; 26(10): 2407-2417, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30078764

RESUMO

Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.


Assuntos
Terapia Genética , Fator Inibidor de Leucemia/genética , Degeneração Retiniana/terapia , Animais , Dependovirus/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Fator Inibidor de Leucemia/administração & dosagem , Camundongos , Neuroproteção/genética , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/patologia , Retina/efeitos dos fármacos , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Tetra-Hidrofolato Desidrogenase/genética , Transgenes/efeitos dos fármacos , Trimetoprima/administração & dosagem
20.
Mol Ther Nucleic Acids ; 8: 184-197, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918020

RESUMO

Adeno-associated virus (AAV) is the most common vector for clinical gene therapy of the CNS. This popularity originates from a high safety record and the longevity of transgene expression in neurons. Nevertheless, clinical efficacy for CNS indications is lacking, and one reason for this is the relatively limited spread and transduction efficacy in large regions of the human brain. Using rationally designed modifications of the capsid, novel AAV capsids have been generated that improve intracellular processing and result in increased transgene expression. Here, we sought to improve AAV-mediated neuronal transduction to minimize the existing limitations of CNS gene therapy. We investigated the efficacy of CNS transduction using a variety of tyrosine and threonine capsid mutants based on AAV2, AAV5, and AAV8 capsids, as well as AAV2 mutants incapable of binding heparan sulfate (HS). We found that mutating several tyrosine residues on the AAV2 capsid significantly enhanced neuronal transduction in the striatum and hippocampus, and the ablation of HS binding also increased the volumetric spread of the vector. Interestingly, the analogous tyrosine substitutions on AAV5 and AAV8 capsids did not improve the efficacy of these serotypes. Our results demonstrate that the efficacy of CNS gene transfer can be significantly improved with minor changes to the AAV capsid and that the effect is serotype specific.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA