Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Small ; 19(13): e2200502, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35789202

RESUMO

Catalytic generation of nitric oxide (NO) from NO donors by nanomaterials has enabled prolonged NO delivery for various biomedical applications, but this approach requires laborious synthesis routes. In this study, a new class of materials, that is, polymeric amines including polyethyleneimine (PEI), poly-L-lysine, and poly(allylamine hydrochloride), is discovered to induce NO generation from S-nitrosothiols (RSNOs) at physiological conditions. Controlled NO generation can be readily achieved by tuning the concentration of the NO donors (RSNOs) and polymers, and the type and molecular weight of the polymers. Importantly, the mechanism of NO generation by these polymers is deciphered to be attributed to the nucleophilic reaction between primary amines on polymers and the SNO groups of RSNOs. The NO-releasing feature of the polymers can be integrated into a suite of materials, for example, simply by embedding PEI into poly(vinyl alcohol) (PVA) hydrogels. The functionality of the PVA/PEI hydrogels is demonstrated for Pseudomonas aeruginosa biofilm prevention with a ≈4 log reduction within 6 h. As NO has potential therapeutic implications in various diseases, the identification of polymeric amines to induce NO release will open new opportunities in NO-generating biomaterials for antibacterial, antiviral, anticancer, antithrombotic, and wound healing applications.


Assuntos
Óxido Nítrico , S-Nitrosotióis , Aminas/farmacologia , Doadores de Óxido Nítrico/farmacologia , Polímeros/farmacologia , Hidrogéis , S-Nitrosotióis/farmacologia
2.
Small ; 18(22): e2200299, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521948

RESUMO

Nanoparticle drug delivery is largely restricted by the low drug loading capacity of nanoparticle carriers. To address this critical challenge and maximize the potential of nanoparticle drug delivery, a 2D ultra-thin layered double hydroxide (LDH) nanosheet with exceptionally high drug loading, excellent colloidal stability, and prolonged blood circulation for cancer treatment is constructed. The nanosheet is synthesized via a biocompatible polymer-assisted bottom-up method and exhibits an ultra-thin 2D sheet-like structure that enables a considerable amount of cargo anchoring sites available for drug loading, leading to an extraordinary 734% (doxorubicin/nanoparticle mass ratio) drug loading capacity. Doxorubicin delivered by the nanosheet remains stable on the nanosheet carrier under the physiological pH condition, while showing sustained release in the tumor microenvironment and the intracellular environment, thus demonstrating on-demand drug release as a result of pH-responsive biodegradation of nanosheets. Using in vitro and in vivo 4T1 breast cancer models, the nanosheet-based ultra-high drug-loading system demonstrates even enhanced therapeutic performance compared to the multilayered LDH-based high drug-loading system, in terms of increased cellular uptake efficiency, prolonged blood circulation, superior therapeutic effect, and reduced systemic toxicity.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas , Microambiente Tumoral
3.
J Colloid Interface Sci ; 615: 517-526, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35152072

RESUMO

Off-target toxicity remains a major limitation of current cancer therapy, necessitating an alternative precision approach to treat cancers. Herein, a tumor microenvironment (TME)-triggered anticancer strategy was developed by constructing an anti-alcoholism drug disulfiram (DSF)-loaded, Cu-doped zeolite imidazolate frameworks-8 (DSF-Cu/ZIF-8) nanoparticle followed by PEGylation (PEG-DSF-Cu/ZIF-8) to realize in situ generation of cytotoxic compounds specifically in TME. The PEG-DSF-Cu/ZIF-8 demonstrated excellent hydrolytic stability in normal physiological conditions, guaranteeing the minimized off-target release of disulfiram and Cu ions. Under the TME condition, the PEG-DSF-Cu/ZIF-8 exhibited acidity-triggered biodegradation and the associated payload release, through which low-toxic compounds (disulfiram and Cu2+ ions) were converted to highly cytotoxic Cu-chelate product to kill cells specifically in TME. Tumor-sensitive anti-cancer performance was further enhanced by hydroxyl radical generation via TME-responsive Fenton-like reactions catalyzed by Cu+ presenting in the PEG-DSF-Cu/ZIF-8 structure and Cu+ produced during formation of the chelate product. Anti-cancer therapeutic evaluation was performed in 2D 4T1 tumor cell culture and 3D 4T1 tumor spheroids, and demonstrated highly TME-responsive, low-dose induced anti-cancer effect. This proof-of-concept work provides a nanoparticle-based drug repurposing strategy by developing a tumor-sensitive anti-cancer agent for low-toxic and efficacious cancer therapy.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Linhagem Celular Tumoral , Cobre/química , Dissulfiram/química , Dissulfiram/farmacologia , Estruturas Metalorgânicas/farmacologia , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Adv Mater ; 34(2): e2105063, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34611948

RESUMO

Synthetic polymers are omnipresent in society as textiles and packaging materials, in construction and medicine, among many other important applications. Alternatively, natural polymers play a crucial role in sustaining life and allowing organisms to adapt to their environments by performing key biological functions such as molecular recognition and transmission of genetic information. In general, the synthetic and natural polymer worlds are completely separated due to the inability for synthetic polymers to perform specific biological functions; in some cases, synthetic polymers cause uncontrolled and unwanted biological responses. However, owing to the advancement of synthetic polymerization techniques in recent years, new synthetic polymers have emerged that provide specific biological functions such as targeted molecular recognition of peptides, or present antiviral, anticancer, and antimicrobial activities. In this review, the emergence of this generation of bioactive synthetic polymers and their bioapplications are summarized. Finally, the future opportunities in this area are discussed.


Assuntos
Peptídeos , Polímeros , Polimerização , Polímeros/química , Têxteis
5.
ACS Chem Neurosci ; 12(23): 4438-4448, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34672533

RESUMO

Respiratory dysfunction is a major cause of death in people with spinal cord injury (SCI). A remaining unsolved problem in treating SCI is the intolerable side effects of the drugs to patients. In a significant departure from conventional targeted nanotherapeutics to overcome the blood-brain barrier (BBB), this work pursues a drug-delivery approach that uses neural tracing retrograde transport proteins to bypass the BBB and deliver an adenosine A1 receptor antagonist drug, 1,3-dipropyl-8-cyclopentyl xanthine, exclusively to the respiratory motoneurons in the spinal cord and the brainstem. A single intradiaphragmatic injection at one thousandth of the native drug dosage induces prolonged respiratory recovery in a hemisection animal model. To translate the discovery into new treatments for respiratory dysfunction, we carry out this study to characterize the purity and quality of synthesis, stability, and drug-release properties of the neural tracing protein (wheat germ agglutinin chemically conjugated to horseradish peroxidase)-coupled nanoconjugate. We show that the batch-to-batch particle size and drug dosage variations are less than 10%. We evaluate the nanoconjugate size against the spatial constraints imposed by transsynaptic transport from pre to postsynaptic neurons. We determine that the nanoconjugate formulation is capable of sustained drug release lasting for days at physiologic pH, a prerequisite for long-distance transport of the drug from the diaphragm muscle to the brainstem. We model the drug-release profiles using a first-order reaction model and the Noyes-Whitney diffusion model. We confirm via biological electron microscopy that the nanoconjugate particles do not accumulate in the tissues at the injection site. We define the nanoconjugate storage conditions after monitoring the solution dispersion stability under various conditions for 4 months. This study supports further development of neural tracing protein-enabled nanotherapeutics for treating respiratory problems associated with SCI.


Assuntos
Preparações Farmacêuticas , Traumatismos da Medula Espinal , Animais , Liberação Controlada de Fármacos , Humanos , Neurônios Motores , Nanoconjugados , Antagonistas de Receptores Purinérgicos P1/uso terapêutico , Traumatismos da Medula Espinal/tratamento farmacológico
6.
Cancer Res ; 81(13): 3461-3479, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33980655

RESUMO

Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.


Assuntos
Sistema y+ de Transporte de Aminoácidos/antagonistas & inibidores , Anticorpos Monoclonais/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Carcinoma Ductal Pancreático/prevenção & controle , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pancreáticas/prevenção & controle , Microambiente Tumoral , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/imunologia , Animais , Apoptose , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
7.
Sci Rep ; 11(1): 1944, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479301

RESUMO

The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to the highly fibrotic stroma and complex multi-cellular microenvironment that is difficult to fully recapitulate in pre-clinical models. To fast-track translation of therapies and to inform personalised medicine, we aimed to develop a whole-tissue ex vivo explant model that maintains viability, 3D multicellular architecture, and microenvironmental cues of human pancreatic tumours. Patient-derived surgically-resected PDAC tissue was cut into 1-2 mm explants and cultured on gelatin sponges for 12 days. Immunohistochemistry revealed that human PDAC explants were viable for 12 days and maintained their original tumour, stromal and extracellular matrix architecture. As proof-of-principle, human PDAC explants were treated with Abraxane and we observed different levels of response between patients. PDAC explants were also transfected with polymeric nanoparticles + Cy5-siRNA and we observed abundant cytoplasmic distribution of Cy5-siRNA throughout the PDAC explants. Overall, our novel model retains the 3D architecture of human PDAC and has advantages over standard organoids: presence of functional multi-cellular stroma and fibrosis, and no tissue manipulation, digestion, or artificial propagation of organoids. This provides unprecedented opportunity to study PDAC biology including tumour-stromal interactions and rapidly assess therapeutic response to drive personalised treatment.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Técnicas de Cultura de Células , Organoides/patologia , Adenocarcinoma/patologia , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Matriz Extracelular/patologia , Matriz Extracelular/ultraestrutura , Humanos , Organoides/ultraestrutura , Pâncreas/patologia , Pâncreas/ultraestrutura , Microambiente Tumoral/genética
8.
Biomater Sci ; 9(2): 391-405, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-32856653

RESUMO

Skin, the largest organ in the human body, provides several important functions, including providing protection from mechanical impacts, micro-organisms, radiation and chemicals; regulation of body temperature; the sensations of touch and temperature; and the synthesis of several substances including vitamin D, melanin, and keratin. Common dermatological disorders (CDDs) include inflammatory or immune-mediated skin diseases, skin infection, skin cancer, and wounds. In the treatment of skin disorders, topical administration has advantages over other routes of administration, and polymers are widely used as vehicles to facilitate the delivery of topical therapeutic agents, serving as matrices to keep therapeutic agents in contact with the skin. Nitric oxide (NO), a cellular signalling molecule, has attracted significant interest in treating a broad spectrum of diseases, including various skin disorders. However, there are a number of challenges in effectively delivering NO. It must be delivered in a controlled manner at sufficient concentrations to be efficacious and the delivery system must be stable during storage. The use of polymer-based systems to deliver NO topically can be an effective strategy to overcome these challenges. There are three main approaches for incorporating NO with polymers in topical delivery systems: (i) physical incorporation of NO donors into polymer bases; (ii) covalent attachment of NO donors to polymers; and (iii) encapsulation of NO donors in polymer-based particles. The latter two approaches provide the greatest control over NO release and have been used by numerous researchers in treating CDDs, including chronic wounds and skin cancer.


Assuntos
Óxido Nítrico , Polímeros , Administração Tópica , Sistemas de Liberação de Medicamentos , Humanos , Doadores de Óxido Nítrico , Pele
9.
ACS Appl Mater Interfaces ; 12(49): 55243-55254, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33233878

RESUMO

We report a high-throughput method for producing surface-tethered polymeric brushes on glass substrates via surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer polymerization (SI-PET-RAFT). Due to its excellent oxygen tolerance, SI-PET-RAFT allows brush growth using low reagent volumes (30 µL) without prior degassing. An initial 28 homopolymer brush library was successfully prepared and screened with respect to their antifouling performance. The high-throughput approach was further exploited to expand the library to encompass statistical, gradient, and block architectures to investigate the effect of monomer composition and distribution using two monomers of disparate performance. In this manner, the degree of attachment from Gram-negative Pseudomonas aeruginosa (PA) bacterial biofilms could be tuned between the bounds set by the homopolymer brushes.


Assuntos
Biofilmes/crescimento & desenvolvimento , Polímeros/química , Pseudomonas/fisiologia , Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Catálise , Vidro/química , Luz , Óxidos de Nitrogênio/química , Oxirredução , Polimerização , Polímeros/síntese química , Polímeros/farmacologia , Propriedades de Superfície
10.
Biomacromolecules ; 21(9): 3887-3897, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32786533

RESUMO

In this study, we report dual roles for doxorubicin (DOX), which can serve as an antitumor drug as well as a cocatalyst for a photoliving radical polymerization. DOX enhances the polymerization rates of a broad range of monomers, including acrylamide, acrylate, and methacrylates, allowing for high monomer conversion and well-defined molecular weights under irradiation with a blue light-emitting diode light (λmax = 485 nm, 2.2 mW/cm2). Utilizing this property, the photopolymerization of N,N-diethylacrylamide was performed in the presence of a poly(oligo(ethylene glycol) methyl ether acrylate) macroreversible addition-fragmentation chain transfer (macroRAFT) agent to prepare polymeric nanoparticles via aqueous polymerization-induced self-assembly (PISA). By varying the monomer:macroRAFT ratio, spherical polymeric nanoparticles of various diameters could be produced. Most notably, DOX was successfully encapsulated into the hydrophobic core of nanoparticles during the PISA process. The DOX-loaded nanoparticles were effectively uptaken into tumor cells and significantly inhibited the proliferation of tumor cells, demonstrating that the DOX bioactivity was not affected by the polymerization reaction.


Assuntos
Doxorrubicina , Nanopartículas , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Metacrilatos , Polimerização , Polímeros
11.
Biomaterials ; 240: 119742, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088410

RESUMO

Pancreatic cancer is predicted to be the second leading cause of cancer-related death by 2025. The best chemotherapy only extends survival by an average of 18 weeks. The extensive fibrotic stroma surrounding the tumor curbs therapeutic options as chemotherapy drugs cannot freely penetrate the tumor. RNA interference (RNAi) has emerged as a promising approach to revolutionize cancer treatment. Small interfering RNA (siRNA) can be designed to inhibit the expression of any gene which is important given the high degree of genetic heterogeneity present in pancreatic tumors. Despite the potential of siRNA therapies, there are hurdles limiting their clinical application such as poor transport across biological barriers, limited cellular uptake, degradation, and rapid clearance. Nanotechnology can address these challenges. In fact, the past few decades have seen the conceptualization, design, pre-clinical testing and recent clinical approval of a RNAi nanodrug to treat disease. In this review, we comment on the current state of play of clinical trials evaluating siRNA nanodrugs and review pre-clinical studies investigating the efficacy of siRNA therapeutics in pancreatic cancer. We assess the physiological barriers unique to pancreatic cancer that need to be considered when designing and testing new nanomedicines for this disease.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Preparações Farmacêuticas , Inativação Gênica , Humanos , Nanomedicina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Interferência de RNA , RNA Interferente Pequeno/genética
12.
J Colloid Interface Sci ; 546: 43-52, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903808

RESUMO

Zinc oxide (ZnO) particles with different shapes and sizes have been previously reported to possess unique optical, electrical, photocatalytic, and antimicrobial properties. Capping agents are routinely used to control particle morphologies; however, few studies have evaluated the influence of capping agents on the growth kinetics of ZnO particles of different shapes. Herein, we report a simple water-based chemical precipitation method to produce unique bowtie-, flower-, and nest-shaped ZnO particles using zinc nitrate and urea in the presence of polyvinylpyrrolidone (PVP). Three distinct particle morphologies are obtained by adjusting polymer concentration during synthesis. This approach is simple and could enable large-scale production of ZnO particles with diverse shapes. We monitor the morphological evolution of ZnO particles and, at different polymer concentrations, uncover the preferable PVP adsorption onto different ZnO facets that controls the growth directions of ZnO. Previous reports have demonstrated the influence of particle shape on ZnO antibacterial activity. In this study, we show that ZnO particles with these three morphologies exhibit similar bacterial killing efficacy towards Escherichia coli and Staphylococcus aureus. Our detailed mechanistic studies suggest that the antibacterial mechanism of ZnO particles can be attributed to both Zn2+ release and oxidative stress, whereas shape plays only a minor role in the antibacterial activity of ZnO particles.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Povidona/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Óxido de Zinco/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Cristalização , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Povidona/síntese química , Povidona/química , Propriedades de Superfície , Óxido de Zinco/síntese química , Óxido de Zinco/química
13.
ACS Biomater Sci Eng ; 5(5): 2555-2562, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33405761

RESUMO

The interference effect and lack of selectivity are the bottlenecks for dual-mode magnetic resonance imaging (MRI) contrast agent development. To address these challenges and overcome the single mode imaging contrast limitations, a novel MgMnAl-layered double hydroxide@iron oxide nanoparticle (MgMnAl-LDH@IO NP) has been successfully synthesized as a concurrently enhanced dual-mode contrast agent for MRI of tumor tissues with sensitive pH response and high efficacy. The attachment of iron oxide nanoparticles on the surface of MgMnAl-LDH NPs led to the increased local magnetic field intensity, inducing the concurrent enhancement of both T1 and T2 relaxivity. The in vitro MRI demonstrated that the MgMnAl-LDH@IO NP could act as a pH-sensitive contrast agent for both T1- and T2-weighted MR imaging (r1, 5.67 mM-1 s-1 under pH 5.0 and 1.98 mM-1 s-1 under pH 7.4; r2, 369.12 mM-1 s-1 under pH 5.0 and 225.29 mM-1 s-1 under pH 7.4). The biocompatibility of the dual-mode contrast agent was revealed by the cytotoxicity test on fibroblast cells. Further in vivo dual-mode MR imaging exhibited that the MgMnAl-LDH@IO NP showed clear T1- and T2-weighted MR imaging of tumor tissues in breast-tumor-bearing mice. The facile synthetic method, desirable biocompatibility, sensitive stimuli response, and concurrently enhanced T1/T2 MRI signals both in vitro and in vivo encourage the great potential biomedical and clinical applications of MgMnAl-LDH@IO NP in MR imaging with improved accuracy.

14.
Adv Sci (Weinh) ; 5(11): 1801155, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30479938

RESUMO

Therapeutic nanocatalysis has emerged as an intriguing strategy for efficient cancer-specific therapy, but the traditional inorganic nanocatalysts suffer from low catalytic efficiency and difficulty in biodegradation, hindering their further clinical translation. Herein, a tumor microenvironment-triggered, biodegradable and biocompatible nanocatalyst employing 2D hydroxide nanosheet is presented, and is shown to have high catalytic capacity to efficiently produce abundant hydroxyl radicals under the tumor microenvironment and consequently kill tumor cells selectively. A polyethylene glycol (PEG)-conjugated Fe2+-containing hydroxide nanosheet is successfully constructed via a facile but efficient bottom-up approach that concurrently realizes nanosheet synthesis and PEGylation. Importantly, the nanosheets are featured with high catalytic activity to disproportionate H2O2 in tumors, and consequently generate abundant hydroxyl radicals at a high reaction rate under tumorous acidic condition; the highly toxic hydroxyl radicals, as a result, cause the death of tumor cells in vitro and suppress the tumor growth in vivo without the use of any supplementary toxic agent, only with the biocompatible nanocatalysts. Meanwhile, the desirable biodegradation and biocompatibility of the hydroxide nanosheet render a high degree of safety to the organism. Therefore, this work provides the first paradigm of biodegradable 2D nanocatalytic platform with concurrently high catalytic-therapeutic performance and biosafety for efficient tumor-specific treatment.

15.
J Colloid Interface Sci ; 521: 242-251, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29574343

RESUMO

Conjugating nanoparticles with polyethylene glycol (PEG) is a useful strategy to improve the colloidal and biological stability of nanoparticles. However, studies on PEGylation of two-dimensional layered double hydroxide (LDH) nanoparticles are very limited. The present work reported two functionalization approaches to synthesize PEG-conjugated LDH nanoparticles by introducing phosphonic acid terminated PEG before and after LDH aging. The successful PEGylation was confirmed and suggested to be via electrostatic interaction and a ligand exchange process. Different functionalization approaches resulted in different binding types of PEG on/in LDH nanoparticles. The PEG coating maintained the dispersity of LDH nanoparticles in water and saline with the feeding mass ratio of 1:1. Further colloidal stability tests of PEGylated LDHs revealed that the PEGylated LDH dispersity was affected by the feeding mass ratio of PEG/LDH, the molar weight of PEG and anions intercalated in the LDHs. In a test to determine the extent of non-specific protein adsorption, the PEGylation was effective at resisting non-specific bovine serum albumin adsorption on LDH nanoparticles with both functionalization methods investigated. Moreover, PEGylated LDH nanoparticles had no effect on cell viability up to 500 µg/mL, and demonstrated enhanced cellular uptake in a SK-MEL-28 cell culture. The results in this work indicate that conjugating phosphonic acid-terminated PEG on LDH nanoparticles is a promising strategy to improve the colloidal and biological stability of LDHs for biomedical applications.


Assuntos
Portadores de Fármacos/química , Hidróxidos/química , Nanopartículas/química , Ácidos Fosforosos/química , Polietilenoglicóis/química , Adsorção , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Coloides , Portadores de Fármacos/toxicidade , Excipientes/química , Fluoresceína-5-Isotiocianato/química , Corantes Fluorescentes/química , Humanos , Nanopartículas/toxicidade , Tamanho da Partícula , Soroalbumina Bovina/química , Solubilidade , Propriedades de Superfície , Água
16.
Macromol Biosci ; 18(4): e1700239, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29411934

RESUMO

Quercetin, a naturally occurring potent antioxidant, is limited in therapeutic use, owing to its poor water solubility and stability. Herein, a method of conjugating quercetin to an aldehyde functionalized dextran via an HCl catalyzed condensation reaction to yield a water soluble quercetin functionalized polymer is reported. The prepared conjugate is characterized by 1 H and 1 H-13 C heteronuclear single quantum correlation (HSQC) NMR, which demonstrate that conjugation occurs via both the A- and B-rings of quercetin. The degree of quercetin functionalization can be tuned by varying the reaction temperature and/or the concentration of the HCl catalyst. However, as temperatures and HCl concentrations are increased above 40 °C and 2 m, respectively, the increase in functionalization is accompanied by an increase in the oxidation of the conjugated quercetin and a decrease in polymer yield. The prepared conjugate is shown to have improved stability compared with native quercetin while maintaining substantial free-radical scavenging activity. Anticancer activity is evaluated in vitro in a neuroblastoma cell line. The dextran-aldehyde-quercetin conjugate prepared at 40 °C and 2 m HCl is shown to be cytotoxic to neuroblastoma cells (SH-SY5Y-IC50 = 123 µg mL-1 and BE(2)-C-IC50 = 380 µg mL-1 ) but shows no activity against nonmalignant MRC-5 cells at concentrations up to 400 µg mL-1 .


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/química , Dextranos/farmacologia , Quercetina/farmacologia , Antineoplásicos/química , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dextranos/química , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Oxirredução/efeitos dos fármacos , Quercetina/química , Água/química
17.
J Mater Chem B ; 6(24): 4124-4138, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32255155

RESUMO

The use of polyphenol-rich plant extracts is well established for the green synthesis of silver nanoparticles (AgNPs). However, the size of the AgNPs varies substantially depending on the extract used and many researchers report sizes above 20 nm, which are not optimal for antimicrobial activity. Herein, using catechin as a model polyphenol, we have explored two techniques to improve its stabilising capacity and therefore decrease the subsequent AgNP size: cross-linking catechin with sodium tetraborate (borax); and preparation of a water soluble oligomer from catechin (polycat). The prepared AgNPs from the three stabilising systems, cat@AgNPs, cat-borax@AgNPs and polycat@AgNPs, were characterised by UV-Vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and inductively coupled plasma mass spectrometry (ICP-MS). Cat-borax produced smaller AgNPs (18.4 nm) than catechin (42.3 nm) but the smallest particles were prepared with polycat (8.5 nm). Antimicrobial efficacy was assessed against Gram positive and Gram negative bacteria and was compared with 10 nm sodium citrate capped AgNPs (citrate@AgNPs). Polycat@AgNPs showed superior antimicrobial activity to cat@AgNPs and cat-borax@AgNPs as well as citrate@AgNPs, exhibiting MICs of only 1.25 µg mL-1 (Ag) for Pseudomonas aeruginosa and Acinetobacter baumannii. Polycat@AgNPs also demonstrated substantially enhanced antibiofilm activity. An Ag concentration of only 5 µg mL-1, was sufficient for a 99.9% reduction in biofilm cell viability and a 99.1% reduction in biofilm biomass with polycat@AgNPs. Uptake of polycat@AgNPs by bacteria was determined to be significantly higher than for citrate@AgNPs and tomographic and SEM images showed evidence of destruction of bacteria cells by polycat@AgNPs.

18.
ACS Macro Lett ; 7(11): 1346-1352, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35651241

RESUMO

Formaldehyde (FA) has been detected via the Hantzsch reaction for many decades. However, the Hantzsch reaction has been rarely used to detect FA in biological systems due to the disadvantages of small-molecule probes (including toxicity and poor water solubility). In this study, polymeric fluorescent probes were developed to resolve these issues associated with small molecules, and FA in living systems was successfully detected via the Hantzsch reaction. These water-soluble polymers were easily scaled-up (∼25 g) by radical polymerization using commercial monomers. These polymers exhibited similar, albeit better, sensitivity to FA compared to water-soluble small molecules, primarily indicative of the advantages of polymers for the detection of FA via the Hantzsch reaction. The polymer structures were highly biocompatible with the probes; thus, these polymers can effectively detect endogenous FA in cells or zebrafish in a safe manner. This result confirmed the superiority of polymers in safety as biocompatible materials. This study highlights a straightforward method for exploring probes for the detection of FA in living systems. It offers functional polymers for bioimaging and extends the application scope of the Hantzsch reaction, reflecting the utility of a broad study of organic reactions in interdisciplinary fields as well as possible key implications in organic chemistry, analytical chemistry, and polymer chemistry.

19.
Nat Nanotechnol ; 12(1): 81-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27618255

RESUMO

Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.


Assuntos
Doxorrubicina , Portadores de Fármacos , Endossomos/metabolismo , Nanopartículas/química , Membrana Nuclear/metabolismo , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Humanos , Células MCF-7 , Microscopia de Fluorescência , Tamanho da Partícula
20.
Oncotarget ; 7(30): 47479-47493, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27374085

RESUMO

Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth.


Assuntos
Antineoplásicos/farmacologia , Catequina/farmacologia , Cobre/metabolismo , Dextranos/farmacologia , Neuroblastoma/tratamento farmacológico , Animais , Proteínas de Transporte de Cátions/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Transportador de Cobre 1 , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA