Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Eur J Pharmacol ; : 176912, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39159716

RESUMO

Glutaminase inhibitors are currently being explored as potential treatments for cancer. This study aimed to elucidate the molecular mechanisms underlying the effects of CB-839 on lung tumor cell lines compared to non-tumor cell lines. Viability assays based on NADPH-dependent dehydrogenases activity, ATP energy production, or mitochondrial reductase activity were used to determine that CB-839 caused significant tumor cell specific inhibition of cellular functions. Clonogenic survival assay revealed a dose dependent reduction in clonogenic survival of various lung tumor cells presenting estimated IC50 values between 10 and 90 nM, while no effect on non-tumor cells was observed. CB-839 led to a 20% reduction in glutaminase (GLS1, a mitochondrial enzyme that catalyzes the conversion of glutamine to glutamate) activity, and a dose-dependent reduced glutamine consumption in tumor cells and had no effect on non-tumor cells. Cell cycle analysis showed the CB-839 did not lead to cell cycle arrest. Apoptosis and necrosis assays revealed an only slight increase in apoptosis in tumor cells. Furthermore, a trypan blue exclusion assay revealed about 40% growth reduction in tumor cells at 0.1-1 µM CB-839 treatment. Surprisingly, treated cells resumed normal growth when re-plated in a drug-free medium, demonstrating reversibility. In hypoxic conditions, CB-839's effect on clonogenic survival was amplified in a dose dependent manner consistent with increased role of GLS1 for energy production under hypoxic conditions. In conclusion, these results suggest CB-839 efficacy is linked to temporary and reversible reduction in glutamine utilization suggesting induction of dormancy.

2.
Radiat Res ; 201(2): 174-187, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329819

RESUMO

Resistance to radiation remains a significant clinical challenge in non-small cell lung carcinoma (NSCLC). It is therefore important to identify the underlying molecular and cellular features that drive acquired resistance. We generated genetically matched NSCLC cell lines to investigate characteristics of acquired resistance. Murine Lewis lung carcinoma (LLC) and human A549 cells acquired an approximate 1.5-2.5-fold increase in radiation resistance as compared to their parental match, which each had unique intrinsic radio-sensitivities. The radiation resistance (RR) was reflected in higher levels of DNA damage and repair marker γH2AX and reduced apoptosis induction after radiation. Morphologically, we found that radiation resistance A549 (A549-RR) cells exhibited a greater nucleus-to-cytosol (N/C) ratio as compared to its parental counterpart. Since the N/C ratio is linked to the differentiation state, we next investigated the epithelial-to-mesenchymal transition (EMT) phenotype and cellular plasticity. We found that A549 cells had a greater radiation-induced plasticity, as measured by E-cadherin, vimentin and double-positive (DP) modulation, as compared to LLC. Additionally, migration was suppressed in A549-RR cells, as compared to A549 cells. Subsequently, we confirmed in vivo that the LLC-RR and A549-RR cells are also more resistance to radiation than their isogenic-matched counterpart. Moreover, we found that the acquired radiation resistance also induced resistance to cisplatin, but not carboplatin or oxaliplatin. This cross-resistance was attributed to induced elevation of thiol levels. Gamma-glutamylcysteine synthetase inhibitor buthionine sulfoximine (BSO) sensitized the resistant cells to cisplatin by decreasing the amount of thiols to levels prior to obtaining acquired radiation resistance. By generating radiation-resistance genetically matched NSCLC we were able to identify and overcome cisplatin cross-resistance. This is an important finding arguing for combinatorial treatment regimens including glutathione pathway disruptors in patients with the potential of improving clinical outcomes in the future.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carboplatina , Butionina Sulfoximina/farmacologia , Butionina Sulfoximina/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
3.
Brain Pathol ; 34(1): e13203, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37574201

RESUMO

The 2021 WHO Classification of Central Nervous System Tumors recommended evaluation of cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion in addition to codeletion of 1p/19q to characterize IDH-mutant gliomas. Here, we demonstrated the use of a nanopore-based copy-number variation sequencing (nCNV-seq) approach to simultaneously identify deletions of CDKN2A/B and 1p/19q. The nCNV-seq approach was initially evaluated on three distinct glioma cell lines and then applied to 19 IDH-mutant gliomas (8 astrocytomas and 11 oligodendrogliomas) from patients. The whole-arm 1p/19q codeletion was detected in all oligodendrogliomas with high concordance among nCNV-seq, FISH, DNA methylation profiling, and whole-genome sequencing. For the CDKN2A/B deletion, nCNV-seq detected the loss in both astrocytoma and oligodendroglioma, with strong correlation with the CNV profiles derived from whole-genome sequencing (Pearson correlation (r) = 0.95, P < 2.2 × 10-16 to r = 0.99, P < 2.2 × 10-16 ) and methylome profiling. Furthermore, nCNV-seq can differentiate between homozygous and hemizygous deletions of CDKN2A/B. Taken together, nCNV-seq holds promise as a new, alternative approach for a rapid and simultaneous detection of the molecular signatures of IDH-mutant gliomas without capital expenditure for a sequencer.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Sequenciamento por Nanoporos , Oligodendroglioma , Humanos , Oligodendroglioma/genética , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia , Mutação , Glioma/patologia , Astrocitoma/patologia , Isocitrato Desidrogenase/genética , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19
4.
Regul Toxicol Pharmacol ; 132: 105171, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469930

RESUMO

1,3-butadiene is a known human carcinogen and a chemical to which humans are exposed occupationally and through environmental pollution. Inhalation risk assessment of 1,3-butadiene was completed several decades ago before data on molecular biomarkers of exposure and effect have been reported from both human studies of workers and experimental studies in mice. To improve risk assessment of 1,3-butadiene, the quantitative characterization of uncertainty in estimations of inter-individual variability in cancer-related effects is needed. For this, we ought to take advantage of the availability of the data on 1,3-butadiene hemoglobin adducts, well established biomarkers of the internal dose of the reactive epoxides, from several large-scale human studies and from a study in a Collaborative Cross mouse population. We found that in humans, toxicokinetic uncertainty factor for 99th percentile of the population ranged from 3.27 to 7.9, depending on the hemoglobin adduct. For mice, these values ranged from less than 2 to 7.51, depending on the dose and the adduct. Quantitative estimated from this study can be used to reduce uncertainties in the parameter estimates used in the models to derive the inhalation unit risk, as well as to address possible differences in variability in 1,3-butadiene metabolism that may be dose-related.


Assuntos
Butadienos , Carcinógenos , Animais , Biomarcadores , Butadienos/química , Butadienos/metabolismo , Butadienos/toxicidade , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Hemoglobinas/metabolismo , Humanos , Camundongos
5.
Toxics ; 10(2)2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35202232

RESUMO

Formation of DNA adducts is a key event for a genotoxic mode of action, and their presence is often used as a surrogate for mutation and increased cancer risk. Interest in DNA adducts are twofold: first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. Methods have been established to quantitate DNA adducts with high chemical specificity and to visualize the location of DNA adducts, and elegant bio-analytical methods have been devised utilizing enzymes, various chemistries, and molecular biology methods. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. Herein, we briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technologies to achieve both measures. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.

6.
Chemistry ; 28(3): e202103245, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34767297

RESUMO

Metabolic activation of the human carcinogen 1,3-butadiene (BD) by cytochrome 450 monooxygenases gives rise to a genotoxic diepoxide, 1,2,3,4-diepoxybutane (DEB). This reactive electrophile alkylates guanine bases in DNA to produce N7-(2-hydroxy-3,4-epoxy-1-yl)-dG (N7-DE-dG) adducts. Because of the positive charge at the N7 position of the purine heterocycle, N7-DEB-dG adducts are inherently unstable and can undergo spontaneous depurination or base-catalyzed imidazole ring opening to give N6 -[2-deoxy-D-erythro-pentofuranosyl]-2,6-diamino-3,4-dihydro-4-oxo-5-N-1-(oxiran-2-yl)propan-1-ol-formamidopyrimidine (DEB-FAPy-dG) adducts. Here we report the first synthesis and structural characterization of DEB-FAPy-dG adducts. Authentic standards of DEB-FAPy-dG and its 15 N3 -labeled analogue were used for the development of a quantitative nanoLC-ESI+ -HRMS/MS method, allowing for adduct detection in DEB-treated calf thymus DNA. DEB-FAPy-dG formation in DNA was dependent on DEB concentration and pH, with higher numbers observed under alkaline conditions.


Assuntos
DNA , Compostos de Epóxi , Butadienos , Cromatografia Líquida de Alta Pressão , Adutos de DNA , Formamidas , Furanos , Humanos , Pirimidinas
7.
Biochem Pharmacol ; 194: 114824, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748821

RESUMO

Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Difenilamina/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Anti-Inflamatórios não Esteroides/toxicidade , Difenilamina/toxicidade , Humanos , Inativação Metabólica/efeitos dos fármacos , Inativação Metabólica/fisiologia , Especificidade por Substrato/efeitos dos fármacos , Especificidade por Substrato/fisiologia
8.
Toxicology ; 463: 152987, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648870

RESUMO

1,3-Butadiene (BD) exposure is known to cause numerous adverse health effects, including cancer, in animals and humans. BD is metabolized to reactive epoxide intermediates, which are genotoxic, but it is not well know what other effects BD has on cellular metabolism. We examined the effects of exposure to BD on the mouse lung metabolome in the genetically heterogeneous collaborative cross outbred mouse model. Mice were exposed to 3 concentra-tions of BD for 10 days (2, 20, and 200 ppm), and lung tissues were analyzed using high-resolution mass spectrometry-based metabolomics. As compared to controls (0 ppm BD), BD had extensive effects on lung metabolism at all concentrations of exposure, including the lowest concentration of 2 ppm, as reflected by reprogramming of multiple metabolic pathways. Metabolites participating in glycolysis and the tricarboxylic acid cycle were elevated, with 8 out of 10 metabolites demonstrating a 2 to 8-fold increase, including the oncometabolite fumarate. Fatty acid levels, sphingosine, and sphinganine were decreased (2 to 8-fold), and fatty acyl-CoAs were significantly increased (16 to 31-fold), suggesting adjustments in lipid metabolism. Furthermore, metabolites involved in basic amino acid metabolism, steroid hormone metabolism, and nucleic acid metabolism were significantly altered. Overall, these changes mirror the metabolic alterations found in lung cancer cells, suggesting that very low doses of BD induce metabolic adaptations that may prevent or promote adverse health effects such as tumor formation.


Assuntos
Butadienos/toxicidade , Neoplasias Pulmonares/patologia , Pulmão/patologia , Metabolômica , Animais , Butadienos/administração & dosagem , Butadienos/metabolismo , Carcinógenos/administração & dosagem , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Camundongos de Cruzamento Colaborativo , Relação Dose-Resposta a Droga , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo , Espectrometria de Massas , Metaboloma , Camundongos , Fenótipo
9.
Toxicology ; 458: 152832, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34107285

RESUMO

Diphenylamine NSAIDs are highly prescribed therapeutics for chronic pain despite causing symptomatic hepatotoxicity through mitochondrial damage in five percent of patients taking them. Differences in toxicity are attributed to structural modifications to the diphenylamine scaffold rather than its inherent toxicity. We hypothesize that marketed diphenylamine NSAID substituents affect preference and efficiency of bioactivation pathways and clearance. We parsed the FDA DILIrank hepatotoxicity database and modeled marketed drug bioactivation into quinone-species metabolites to identify a family of seven clinically relevant diphenylamine NSAIDs. These drugs fell into two subgroups, i.e., acetic acid and propionic acid diphenylamines, varying in hepatotoxicity risks and modeled bioactivation propensities. We carried out steady-state kinetic studies to assess bioactivation pathways by trapping quinone-species metabolites with dansyl glutathione. Analysis of the glutathione adducts by mass spectrometry characterized structures while dansyl fluorescence provided quantitative yields for their formation. Resulting kinetics identified four possible bioactivation pathways among the drugs, but reaction preference and efficiency depended upon structural modifications to the diphenylamine scaffold. Strikingly, diphenylamine dihalogenation promotes formation of quinone metabolites through four distinct metabolic pathways with high efficiency, whereas those without aromatic halogen atoms were metabolized less efficiently through two or fewer metabolic pathways. Overall metabolism of the drugs was comparable with bioactivation accounting for 4-13% of clearance. Lastly, we calculated daily bioload exposure of quinone-species metabolites based on bioactivation efficiency, bioavailability, and maximal daily dose. The results revealed stratification into the two subgroups; propionic acid diphenylamines had an average four-fold greater daily bioload compared to acetic acid diphenylamines. However, the lack of sufficient study on the hepatotoxicity for all drugs prevents further correlative analyses. These findings provide critical insights on the impact of diphenylamine bioactivation as a precursor to hepatotoxicity and thus, provide a foundation for better risk assessment in drug discovery and development.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Difenilamina/química , Difenilamina/metabolismo , Ácido Acético/metabolismo , Ativação Metabólica , Animais , Anti-Inflamatórios não Esteroides/toxicidade , Disponibilidade Biológica , Doença Hepática Induzida por Substâncias e Drogas/genética , Bases de Dados Factuais , Difenilamina/toxicidade , Glutationa/metabolismo , Halogenação , Humanos , Cinética , Microssomos Hepáticos/metabolismo , Propionatos/metabolismo , Quinonas/metabolismo
10.
Drug Metab Dispos ; 49(2): 133-141, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33239334

RESUMO

Meclofenamate is a nonsteroidal anti-inflammatory drug used in the treatment of mild-to-moderate pain yet poses a rare risk of hepatotoxicity through an unknown mechanism. Nonsteroidal anti-inflammatory drug (NSAID) bioactivation is a common molecular initiating event for hepatotoxicity. Thus, we hypothesized a similar mechanism for meclofenamate and leveraged computational and experimental approaches to identify and characterize its bioactivation. Analyses employing our XenoNet model indicated possible pathways to meclofenamate bioactivation into 19 reactive metabolites subsequently trapped into glutathione adducts. We describe the first reported bioactivation kinetics for meclofenamate and relative importance of those pathways using human liver microsomes. The findings validated only four of the many bioactivation pathways predicted by modeling. For experimental studies, dansyl glutathione was a critical trap for reactive quinone metabolites and provided a way to characterize adduct structures by mass spectrometry and quantitate yields during reactions. Of the four quinone adducts, we were able to characterize structures for three of them. Based on kinetics, the most efficient bioactivation pathway led to the monohydroxy para-quinone-imine followed by the dechloro-ortho-quinone-imine. Two very inefficient pathways led to the dihydroxy ortho-quinone and a likely multiply adducted quinone. When taken together, bioactivation pathways for meclofenamate accounted for approximately 13% of total metabolism. In sum, XenoNet facilitated prediction of reactive metabolite structures, whereas quantitative experimental studies provided a tractable approach to validate actual bioactivation pathways for meclofenamate. Our results provide a foundation for assessing reactive metabolite load more accurately for future comparative studies with other NSAIDs and drugs in general. SIGNIFICANCE STATEMENT: Meclofenamate bioactivation may initiate hepatotoxicity, yet common risk assessment approaches are often cumbersome and inefficient and yield qualitative insights that do not scale relative bioactivation risks. We developed and applied innovative computational modeling and quantitative kinetics to identify and validate meclofenamate bioactivation pathways and relevance as a function of time and concentration. This strategy yielded novel insights on meclofenamate bioactivation and provides a tractable approach to more accurately and efficiently assess other drug bioactivations and correlate risks to toxicological outcomes.


Assuntos
Anti-Inflamatórios não Esteroides/farmacocinética , Ácido Meclofenâmico/farmacocinética , Ativação Metabólica , Benzoquinonas/metabolismo , Cromatografia Líquida , Glutationa/metabolismo , Humanos , Espectrometria de Massas , Microssomos Hepáticos/metabolismo , Modelos Químicos , Espectrometria de Fluorescência
11.
Chem Res Toxicol ; 34(1): 119-131, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33381973

RESUMO

Smoking is a leading cause of lung cancer, accounting for 81% of lung cancer cases. Tobacco smoke contains over 5000 compounds, of which more than 70 have been classified as human carcinogens. Of the many tobacco smoke constituents, 1,3-butadiene (BD) has a high cancer risk index due to its tumorigenic potency and its abundance in cigarette smoke. The carcinogenicity of BD has been attributed to the formation of several epoxide metabolites, of which 1,2,3,4-diepoxybutane (DEB) is the most toxic and mutagenic. DEB is formed by two oxidation reactions carried out by cytochrome P450 monooxygenases, mainly CYP2E1. Glutathione-S-transferase theta 1 (GSTT1) facilitates the conjugation of DEB to glutathione as the first step of its detoxification and subsequent elimination via the mercapturic acid pathway. Human biomonitoring studies have revealed a strong association between GSTT1 copy number and urinary concentrations of BD-mercapturic acids, suggesting that it plays an important role in the metabolism of BD. To determine the extent that GSTT1 genotype affects the susceptibility of individuals to the toxic and genotoxic properties of DEB, GSTT1 negative and GSTT1 positive HapMap lymphoblastoid cell lines were treated with DEB, and the extent of apoptosis and micronuclei (MN) formation was assessed. These toxicological end points were compared to the formation of DEB-GSH conjugates and 1,4-bis-(guan-7-yl)-2,3-butanediol (bis-N7G-BD) DNA-DNA cross-links. GSTT1 negative cell lines were more sensitive to DEB-induced apoptosis as compared to GSTT1 positive cell lines. Consistent with the protective effect of GSH conjugation against DEB-derived apoptosis, GSTT1 positive cell lines formed significantly more DEB-GSH conjugate than GSTT1 negative cell lines. However, GSTT1 genotype did not affect formation of MN or bis-N7G-BD cross-links. These results indicate that GSTT1 genotype significantly influences BD metabolism and acute toxicity.


Assuntos
DNA/metabolismo , Compostos de Epóxi/metabolismo , Glutationa Transferase/metabolismo , Linhagem Celular , DNA/química , Adutos de DNA/química , Adutos de DNA/metabolismo , Compostos de Epóxi/síntese química , Compostos de Epóxi/química , Genótipo , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/genética , Humanos , Estrutura Molecular
12.
Chem Res Toxicol ; 33(12): 2944-2952, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-32799528

RESUMO

Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O6- or N2-alkyl-2'-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.


Assuntos
Adutos de DNA/análise , DNA/química , Estrutura Molecular , Sequenciamento por Nanoporos , Tamanho da Partícula , Plasmídeos , Estereoisomerismo , Propriedades de Superfície
13.
Cell Death Discov ; 6: 8, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32123584

RESUMO

Genetic obesity increases in liver phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio, inducing endoplasmic reticulum (ER) stress without concomitant increase of ER chaperones. Here, it is found that exposing mice to a palm oil-based high fat (HF) diet induced obesity, loss of liver PE, and loss of the ER chaperone Grp78/BiP in pericentral hepatocytes. In Hepa1-6 cells treated with elevated concentration of palmitate to model lipid stress, Grp78/BiP mRNA was increased, indicating onset of stress-induced Unfolded Protein Response (UPR), but Grp78/BiP protein abundance was nevertheless decreased. Exposure to elevated palmitate also induced in hepatoma cells decreased membrane glycosylation, nuclear translocation of pro-apoptotic C/EBP-homologous-protein-10 (CHOP), expansion of ER-derived quality control compartment (ERQC), loss of mitochondrial membrane potential (MMP), and decreased oxidative phosphorylation. When PE was delivered to Hepa1-6 cells exposed to elevated palmitate, effects by elevated palmitate to decrease Grp78/BiP protein abundance and suppress membrane glycosylation were blunted. Delivery of PE to Hepa1-6 cells treated with elevated palmitate also blunted expansion of ERQC, decreased nuclear translocation of CHOP and lowered abundance of reactive oxygen species (ROS). Instead, delivery of the chemical chaperone 4-phenyl-butyrate (PBA) to Hepa1-6 cells treated with elevated palmitate, while increasing abundance of Grp78/BiP protein and restoring membrane glycosylation, also increased ERQC, expression and nuclear translocation of CHOP, non-mitochondrial oxygen consumption, and generation of ROS. Data indicate that delivery of PE to hepatoma cells under lipid stress recovers cell function by targeting the secretory pathway and by blunting pro-apoptotic branches of the UPR.

14.
Tob Induc Dis ; 17: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516487

RESUMO

INTRODUCTION: The 2016 US Surgeon General's Report suggests that the use of electronic nicotine delivery systems (ENDS) is a fetal risk factor. However, no previous study has estimated their effect on adverse pregnancy outcomes. We assessed the prevalence of current ENDS use in pregnant women and explored the effect on birth weight and smallness-for-gestational-age (SGA), correcting for misclassification from nondisclosure of smoking status. METHODS: We conducted a cohort study with 248 pregnant women using questionnaire data and biomarkers (salivary cotinine, exhaled carbon monoxide, and hair nicotine). We evaluated the association between birth weight and the risk of SGA by applying multivariate linear and log-binomial regression to reproductive outcome data for 232 participants. Participants who did not disclose their smoking status were excluded from the referent group. Sensitivity analysis corrected for misclassification of smoking/ENDS use status. RESULTS: The prevalence of current ENDS use among pregnant women was 6.8% (95% CI: 4.4-10.2%); most of these (75%) were concurrent smokers. Using self-reports, the estimated risk ratio of SGA for ENDS users was nearly two times the risk in the unexposed (RR=1.9, 95% CI: 0.6-5.5), and over three times that for ENDS-only users versus the unexposed (RR=3.1, 95% CI: 0.8-11.7). Excluding from the referent group smokers who did not disclose their smoking status, the risk of SGA for ENDS-only use was 5 times the risk in the unexposed (RR=5.1, 95% CI: 1.1- 22.2), and almost four times for all types of ENDS users (RR=3.8, 95% CI: 1.3-11.2). SGA risk ratios for ENDS users, corrected for misclassification due to self-report, were 6.5-8.5 times that of the unexposed. CONCLUSIONS: Our data suggest that ENDS use is associated with an increased risk of SGA.

15.
Tob Induc Dis ; 17: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516493

RESUMO

INTRODUCTION: Public awareness of electronic nicotine delivery systems (ENDS) has increased over time, and the perception that ENDS offer a safer alternative to cigarettes may lead some pregnant women to use them to reduce cigarette smoking during pregnancy. No previous studies have used metabolite levels in hair to measure nicotine exposure for ENDS users during pregnancy. We aimed to measure and compare levels of nicotine, cotinine, and tobacco-specific nitrosamines (TSNAs) in hair samples from pregnant women who were current ENDS users, current smokers, and current non-smokers. We also aimed to estimate the association between ENDS use/smoking and smallness for gestational age (SGA). METHODS: We used hair specimens from pregnant women who were dual users (ENDS and cigarettes), smokers, and non-smokers from a prospective cohort study to estimate exposure to nicotine, cotinine, and TSNAs. The exposure biomarkers and self-reports of smoking and ENDS use were used in log-binomial regression models to estimate risk ratios (RRs) for SGA among offspring. RESULTS: Nicotine concentrations for pregnant dual users were not significantly different from those for smokers (11.0 and 10.6 ng/mg hair, respectively; p=0.58). Similarly, levels of cotinine, and TSNAs for pregnant dual users were not lower than those for smokers. The RR for SGA was similar for dual users and smokers relative to nonsmokers, (RR=3.5, 95% CI: 0.8-14.8) and (RR=3.3, 95% CI: 0.9-11.6), respectively. Using self-reports confirmed by hair nicotine, the RR values for dual ENDS users and smokers were 8.3 (95% CI: 1.0-69.1) and 7.3 (95% CI:1.0-59.0), respectively. CONCLUSIONS: We did not observe lower levels of nicotine, cotinine, and TSNAs for current dual users compared to smokers during pregnancy. The risk of SGA for offspring of pregnant dual users was similar to that for offspring of pregnant smokers. Future studies are needed to further estimate the magnitude of the association between ENDS use and smallness for gestational age.

16.
Rapid Commun Mass Spectrom ; 33(21): 1635-1642, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31240802

RESUMO

RATIONALE: Treosulfan is a substance that is being studied as part of the conditioning regimen given prior to allogeneic stem cell transplantation in patients with hematological malignancies. It is known to decompose into 1,2:3,4-diepoxybutane (DEB) under physiologic conditions. In this study, we investigate whether N-terminal valine adducts can be utilized to monitor differences in DEB formation of patients receiving treosulfan as part of the conditioning regimen for transplantation. METHODS: Blood samples were collected from a group of 14 transplant recipients and analyzed for N,N-(2,3-dihydroxy-1,4-butadiyl)valine (pyr-Val) and 2,3,4-trihydroxybutylvaline (THB-Val) adducts as biomarkers for drug uptake and metabolism before treosulfan treatment and 6 days after treatment. RESULTS: A new direct injection liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated prior to clinical analysis. The assay precision was determined by 3 replicate analyses on 3 individual days using control globin spiked with known amounts of pyr-Val and THB-Val. The intra- and inter-day precision coefficients of variance (CVs) and accuracy were < 10% and 15%, respectively. In clinical specimens, the means ± SD of pyr-Val and THB-Val background were 0.29 ± 0.10 pmol/g HB and 5.17 ± 1.7 pmol/g HB, respectively. CONCLUSIONS: These values are similar to those found previously. Treosulfan treatment leads to a significant increase in pyr-Val and THB-Val adducts in each patient (Student's t-test p <0.0001). The mean ± SD amounts of adduct formed were 245.3 ± 89.6 and 210 ± 78.5 pmol/g globin for pyr-Val and THB-Val, respectively. Importantly, these results show that this direct injection method can quantitate both background and treosulfan-induced pyr-Val and THB-Val N-terminal valine globin adducts in humans.


Assuntos
Bussulfano/análogos & derivados , Cromatografia Líquida/métodos , Hemoglobinas/química , Espectrometria de Massas em Tandem/métodos , Condicionamento Pré-Transplante/efeitos adversos , Valina/química , Adulto , Idoso , Bussulfano/administração & dosagem , Bussulfano/efeitos adversos , Feminino , Humanos , Leucemia/terapia , Linfoma/terapia , Masculino , Pessoa de Meia-Idade , Transplante de Células-Tronco , Transplante Homólogo , Adulto Jovem
17.
Int J Radiat Biol ; 95(4): 436-442, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30557074

RESUMO

PURPOSE: The purpose of this study was to translate our in vitro therapy approach to an in vivo model. Increased glutamine uptake is known to drive cancer cell proliferation, making tumor cells glutamine-dependent. Studying lymph-node aspirates containing malignant lung tumor cells showed a strong correlation between glutamine consumption and glutathione (GSH) excretion. Subsequent experiments with A549 and H460 lung tumor cell lines provided additional evidence for glutamine's role in driving synthesis and excretion of GSH. Using stable-isotope-labeled glutamine as a tracer metabolite, we demonstrated that the glutamate group in GSH is directly derived from glutamine, linking glutamine utilization intimately to GSH syntheses. MATERIALS AND METHODS: To understand the possible mechanistic link between glutamine consumption and GSH excretion, we studied GSH metabolism in more detail. Inhibition of glutaminase (GLS) with BPTES, a GLS-specific inhibitor, effectively abolished GSH synthesis and excretion. Since our previous work, several novel GLS inhibitors became available and we report herein effects of CB-839 in A427, H460 and A549 lung tumor cells and human lungtumor xenografts in mice. RESULTS: Inhibition of GLS markedly reduced cell viability, producing ED50 values for inhibition of colony formation of 9, 27 and 217 nM in A427, A549 and H460, respectively. Inhibition of GLS is accompanied by ∼30% increased response to radiation, suggesting an important role of glutamine-derived GSH in protecting tumor cells against radiation-induced injury. In subsequent mouse xenografts, short-term CB-839 treatments reduced serum GSH by >50% and increased response to radiotherapy of H460-derived tumor xenografts by 30%. CONCLUSION: The results support the proposed mechanistic link between GLS activity and GSH synthesis and suggest that GLS inhibitors are effective radiosensitizers.


Assuntos
Benzenoacetamidas/farmacologia , Glutaminase/antagonistas & inibidores , Neoplasias Pulmonares/radioterapia , Tolerância a Radiação/efeitos dos fármacos , Tiadiazóis/farmacologia , Animais , Linhagem Celular Tumoral , Feminino , Glutamina/metabolismo , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Blood Coagul Fibrinolysis ; 29(7): 602-612, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30334816

RESUMO

: For this pilot study, we leveraged metabolite patterns for warfarin patients to more accurately assess clinically relevant differences in drug metabolism. We tested our hypothesis that plasma metabolite levels correlate with the influence of clinical factors on R-warfarin and S-warfarin metabolism (warfarin metabolic phenotype). We recruited 29 patients receiving a maintenance dose and testing within targeted therapeutic range. We determined their CYP2C9 and vitamin K epoxide reductase genotype and profiled 14 isomeric forms of warfarin and its metabolites. We employed three novel types of clearance ratios using analyte levels to perform multiple-linear regression analyses with clinical factors impacting drug metabolism and dose-responses. Competitive clearance ratios correlated with seven clinical factors including lifestyle choices (smoking), genetics (CYP2C9 and vitamin K epoxide reductase 1), and drug interactions (omeprazole) along with age, weight, and malignancy. Significant competitive clearance ratio correlations (P = 0.04 to < 0.001) explained 21-95% variability. Their performances surpassed that of oxidative and metabolic clearance ratios based on the number and significance of correlations. Competitive clearance ratios may accurately assess significance of factors on maintaining levels of pharmacologically active forms of the drug and metabolites related to dose-responses and thus provide a strategy to minimize adverse events and improve safety during anticoagulant therapy. This unique capacity could provide a strategy in a future, higher power study with a larger cohort of patients to more accurately assess the significance of clinical factors on active drug levels contributing to warfarin dose-responses.


Assuntos
Anticoagulantes/metabolismo , Varfarina/metabolismo , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Fenótipo , Projetos Piloto
19.
Front Microbiol ; 9: 1757, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30127774

RESUMO

Non-small cell lung cancer (NSCLC) is the major form of lung cancer, with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) being its major subtypes. Smoking alone cannot completely explain the lung cancer etiology. We hypothesize that altered lung microbiome and chronic inflammatory insults in lung tissues contribute to carcinogenesis. Here we explore the microbiome composition of LUAD samples, compared to LUSC and normal samples. Extraction of microbiome DNA in formalin-fixed, paraffin-embedded (FFPE) lung tumor and normal adjacent tissues was meticulously performed. The 16S rRNA product from extracted microbiota was subjected to microbiome amplicon sequencing. To assess the contribution of the host genome, CD36 expression levels were analyzed then integrated with altered NSCLC subtype-specific microbe sequence data. Surprisingly phylum Cyanobacteria was consistently observed in LUAD samples. Across the NSCLC subtypes, differential abundance across four phyla (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes) was identified based on the univariate analysis (p-value < 6.4e-4 to 3.2e-2). In silico metagenomic and pathway analyses show that presence of microcystin correlates with reduced CD36 and increased PARP1 levels. This was confirmed in microcystin challenged NSCLC (A427) cell lines and Cyanobacteria positive LUAD tissues. Controlling the influx of Cyanobacteria-like particles or microcystin and the inhibition of PARP1 can provide a potential targeted therapy and prevention of inflammation-associated lung carcinogenesis.

20.
Cancer Treat Res Commun ; 14: 1-6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30104001

RESUMO

BACKGROUND: Treatment of lung cancer is evolving from the use of cytotoxic drugs to drugs that interrupt pathways specific to a malignancy. The field of metabolomics has promise with respect to identification of tumor-specific processes and therapeutic targets, but to date has yielded inconsistent data in patients with lung cancer. Lymph nodes are often aspirated in the process of evaluating lung cancer, as malignant cells in lymph nodes are used for diagnosis and staging. We hypothesized that fluids from lymph node aspirates contains tumor-specific metabolites and are a suitable source for defining the metabolomic phenotype of lung cancers. PATIENTS AND MATERIALS: Metabolic profiles were generated from nodal aspirates of ten patients with adenocarcinoma, ten with squamous cell carcinoma, and ten with non-malignant conditions using time-of-flight mass spectrometry. In addition, concentrations of selected metabolites participating in the kynurenine and glutathione pathways were measured in a second set of aspirates using tandem mass spectrometry. RESULTS: A list of consensus features that separated these three groups was identified. Two of the consensus features were tentatively identified as kynurenine and as oxidized glutathione. It was shown that metabolite concentrations in these pathways are different for patients with and without malignancy. CONCLUSION: Together the data suggest that metabolomic analysis of lymph node aspirates can identify tumor-specific differences in cancer metabolism and reveal novel therapeutic targets. This proof-of-concept study demonstrates the validity to complement and refine diagnosis of lung cancer based on metabolic signature in lymph node aspirates. MICRO ABSTRACT: Treatment of lung cancer is evolving from the use of cytotoxic drugs to drugs that interrupt metabolic pathways specific to a malignancy. We report here in that the metabolic phenotype of lung cancer can be determined in lymph node aspirates harboring malignant tumor cells. Knowledge about metabolic activity of malignant tumor cells may aide to personalize therapy.


Assuntos
Adenocarcinoma/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Linfonodos/metabolismo , Metaboloma , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Idoso , Idoso de 80 Anos ou mais , Biópsia por Agulha , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Feminino , Dissulfeto de Glutationa/metabolismo , Humanos , Cinurenina/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linfonodos/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Estudo de Prova de Conceito
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA