Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Cell Biol ; 101(3): 151230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35550931

RESUMO

Iron is the most abundant transition metal in all living organisms and is essential for several cellular activities, including respiration, oxygen transport, energy production and regulation of gene expression. Iron starvation is used by professional phagocytes, from Dictyostelium to macrophages, as a form of defense mechanism against intracellular pathogens. Previously, we showed that Dictyostelium cells express the proton-driven iron transporter Nramp1 (Natural Resistance-Associated Macrophage Protein 1) and the homolog NrampB (Nramp2) in membranes of macropinosomes and phagosomes or of the contractile vacuole network, respectively. The Nramp-driven transport of iron across membranes is selective for ferrous ions. Since iron is mostly present as ferric ions in growth media and in engulfed bacteria, we have looked for proteins with ferric reductase activity. The Dictyostelium genome does not encode for classical STEAP (Six-Transmembrane Epithelial Antigen of Prostate) ferric reductases, but harbors three genes encoding putative ferric chelate reductase belonging to the Cytochrome b561 family containing a N terminus DOMON domain (DOpamine ß-MONooxygenase N-terminal domain). We have cloned the three genes, naming them fr1A, fr1B and fr1C. fr1A and fr1B are mainly expressed in the vegetative stage while fr1C is highly expressed in the post aggregative stage. All three reductases are localized in the endoplasmic reticulum, but Fr1A is also found in endolysosomal vesicles, in the Golgi and, to a much lower degree, in the plasma membrane, whereas Fr1C is homogeneously distributed in the plasma membrane and in macropinosomal and phagosomal membranes. To gain insight in the function of the three genes we generated KO mutants, but gene disruption was successful only for two of them (fr1A and fr1C), being very likely lethal for fr1B. fr1A- shows a slight delay in the aggregation stage of development, while fr1C- gives rise to large multi-tipped streams during aggregation and displays a strong delay in fruiting body formation. The two single mutants display altered cell growth under conditions of ferric ions overloading and, in the ability to reduce Fe3+, confirming a role of these putative ferric reductases in iron reduction and transport from endo-lysosomal vesicles to the cytosol.


Assuntos
Dictyostelium , FMN Redutase , Dictyostelium/enzimologia , Dictyostelium/genética , FMN Redutase/genética , FMN Redutase/metabolismo , Íons/metabolismo , Ferro/metabolismo
2.
Front Cell Dev Biol ; 9: 720623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888305

RESUMO

In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1 null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.

3.
Epidemiol Prev ; 41(5-6): 250-255, 2017.
Artigo em Italiano | MEDLINE | ID: mdl-29119759

RESUMO

OBJECTIVES: to consider the admission test to the degree course in Medicine and Surgery in the three campus of Piedmont Region (Northern Italy) in order to discuss the ability of this test to predict the academic outcome of the students. DESIGN: cohort study considering all the students enrolled in the first year of medicine during the academic year 2014-2015. Their academic career is monitored during the period January 2015-February 2016. SETTING AND PARTICIPANTS: a total of 781 students is considered and divided into two groups: regular (registered after passing the admission test; n. 605) and TAR (registered after court decision and having won the case in tribunal; n. 176). MAIN OUTCOME MEASURES: the study is based on three indicators of performance: A1. at least one of the required exams in the first year passed; A2. at least half of the required exams in the first year passed; A3. all the exams required in the first year passed. Statistical analyses are based on: positive predictive value and relative 95% confidence interval; odds ratio and relative 95% confidence intervals, adjusted by sex, age, high school type, and vote estimated by logistic regression models. RESULTS: the results highlight the good prediction of the admission test that remains significant even after adjustment for the confounding factors considered. CONCLUSIONS: the major limits are the short period of observation and the restricted number of campus considered. However, this analysis confirms the importance of the admission test. In fact, students with low scores in the test could show serious disadvantages in passing the exams (in the appointed time) in the first year.


Assuntos
Teste de Admissão Acadêmica , Educação Médica , Escolaridade , Fatores de Confusão Epidemiológicos , Seguimentos , Previsões , Cirurgia Geral/educação , Humanos , Itália , Razão de Chances , Estudantes de Medicina , Universidades/estatística & dados numéricos
4.
J Cell Sci ; 130(3): 551-562, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049717

RESUMO

Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.


Assuntos
Quimiotaxia , Dictyostelium/citologia , Dictyostelium/enzimologia , Proteínas de Protozoários/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenilil Ciclases/metabolismo , Polaridade Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA/metabolismo , Dictyostelium/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação , Domínios Proteicos , Proteínas de Protozoários/química , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química
5.
Artigo em Inglês | MEDLINE | ID: mdl-29379774

RESUMO

Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.


Assuntos
Cobre/metabolismo , Dictyostelium/metabolismo , Dictyostelium/microbiologia , Interações Hospedeiro-Patógeno , Ferro/metabolismo , Legionella pneumophila/fisiologia , Zinco/metabolismo , Citometria de Fluxo , Espaço Intracelular/metabolismo , Microscopia de Fluorescência
6.
J Cell Sci ; 128(17): 3304-16, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26208637

RESUMO

The Nramp (Slc11) protein family is widespread in bacteria and eukaryotes, and mediates transport of divalent metals across cellular membranes. The social amoeba Dictyostelium discoideum has two Nramp proteins. Nramp1, like its mammalian ortholog (SLC11A1), is recruited to phagosomal and macropinosomal membranes, and confers resistance to pathogenic bacteria. Nramp2 is located exclusively in the contractile vacuole membrane and controls, synergistically with Nramp1, iron homeostasis. It has long been debated whether mammalian Nramp1 mediates iron import or export from phagosomes. By selectively loading the iron-chelating fluorochrome calcein in macropinosomes, we show that Dictyostelium Nramp1 mediates iron efflux from macropinosomes in vivo. To gain insight in ion selectivity and the transport mechanism, the proteins were expressed in Xenopus oocytes. Using a novel assay with calcein, and electrophysiological and radiochemical assays, we show that Nramp1, similar to rat DMT1 (also known as SLC11A2), transports Fe(2+) and manganese, not Fe(3+) or copper. Metal ion transport is electrogenic and proton dependent. By contrast, Nramp2 transports only Fe(2+) in a non-electrogenic and proton-independent way. These differences reflect evolutionary divergence of the prototypical Nramp2 protein sequence compared to the archetypical Nramp1 and DMT1 proteins.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Dictyostelium/metabolismo , Ferro/metabolismo , Fagossomos/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Proteínas de Transporte de Cátions/genética , Dictyostelium/genética , Transporte de Íons/fisiologia , Fagossomos/genética , Proteínas de Protozoários/genética , Ratos
7.
Artigo em Inglês | MEDLINE | ID: mdl-24066281

RESUMO

Dictyostelium cells are forest soil amoebae, which feed on bacteria and proliferate as solitary cells until bacteria are consumed. Starvation triggers a change in life style, forcing cells to gather into aggregates to form multicellular organisms capable of cell differentiation and morphogenesis. As a soil amoeba and a phagocyte that grazes on bacteria as the obligate source of food, Dictyostelium could be a natural host of pathogenic bacteria. Indeed, many pathogens that occasionally infect humans are hosted for most of their time in protozoa or free-living amoebae, where evolution of their virulence traits occurs. Due to these features and its amenability to genetic manipulation, Dictyostelium has become a valuable model organism for studying strategies of both the host to resist infection and the pathogen to escape the defense mechanisms. Similarly to higher eukaryotes, iron homeostasis is crucial for Dictyostelium resistance to invasive bacteria. Iron is essential for Dictyostelium, as both iron deficiency or overload inhibit cell growth. The Dictyostelium genome shares with mammals many genes regulating iron homeostasis. Iron transporters of the Nramp (Slc11A) family are represented with two genes, encoding Nramp1 and Nramp2. Like the mammalian ortholog, Nramp1 is recruited to phagosomes and macropinosomes, whereas Nramp2 is a membrane protein of the contractile vacuole network, which regulates osmolarity. Nramp1 and Nramp2 localization in distinct compartments suggests that both proteins synergistically regulate iron homeostasis. Rather than by absorption via membrane transporters, iron is likely gained by degradation of ingested bacteria and efflux via Nramp1 from phagosomes to the cytosol. Nramp gene disruption increases Dictyostelium sensitivity to infection, enhancing intracellular growth of Legionella or Mycobacteria. Generation of mutants in other "iron genes" will help identify genes essential for iron homeostasis and resistance to pathogens.


Assuntos
Dictyostelium/metabolismo , Dictyostelium/microbiologia , Ferro/metabolismo , Legionella/metabolismo , Mycobacterium/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Homeostase
8.
Methods Mol Biol ; 983: 17-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23494300

RESUMO

Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.


Assuntos
Dictyostelium/citologia , Animais , Doenças da Medula Óssea/genética , Quimiotaxia , Dictyostelium/efeitos dos fármacos , Dictyostelium/fisiologia , Avaliação Pré-Clínica de Medicamentos , Insuficiência Pancreática Exócrina/genética , Interações Hospedeiro-Patógeno , Humanos , Doença de Huntington/genética , Lipomatose/genética , Doenças Mitocondriais/genética , Modelos Biológicos , Fagocitose , Proteínas de Protozoários/fisiologia , Síndrome de Shwachman-Diamond
9.
J Cell Sci ; 126(Pt 1): 301-11, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22992462

RESUMO

The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.


Assuntos
Dictyostelium/metabolismo , Dictyostelium/microbiologia , Ferro/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Legionella pneumophila/patogenicidade , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo
10.
Cell Microbiol ; 13(11): 1793-811, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21824247

RESUMO

In unicellular amoebae, such as Dictyostelium discoideum, bacterial phagocytosis is a food hunting device, while in higher organisms it is the first defence barrier against microbial infection. In both cases, pathogenic bacteria exploit phagocytosis to enter the cell and multiply intracellularly. Salmonella typhimurium, the agent of food-borne gastroenteritis, is phagocytosed by both macrophages and Dictyostelium cells. By using cell biological assays and global transcriptional analysis with DNA microarrays covering the Dictyostelium genome, we show here that S. typhimurium is pathogenic for Dictyostelium cells. Depending on the degree of virulence, which in turn depended on bacterial growth conditions, Salmonella could kill Dictyostelium cells or inhibit their growth and development. In the early phase of infection in non-nutrient buffer, the ingested bacteria escaped degradation, induced a starvation-like transcriptional response but inhibited selectively genes required for chemotaxis and aggregation. This way differentiation of the host cells into spore and stalk cells was blocked or delayed, which in turn is likely to be favourable for the establishment of a replicative niche for Salmonella. Inhibition of the aggregation competence and chemotactic streaming of aggregation-competent cells in the presence of Salmonella suggests interference with cAMP signalling.


Assuntos
Dictyostelium/microbiologia , Dictyostelium/fisiologia , Fagocitose , Salmonella typhimurium/patogenicidade , Sobrevivência Celular , AMP Cíclico/metabolismo , Dictyostelium/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Análise em Microsséries , Salmonella typhimurium/crescimento & desenvolvimento , Transdução de Sinais
11.
Int Rev Cell Mol Biol ; 271: 253-300, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19081545

RESUMO

Research into phagocytosis and host-pathogen interactions in the lower eukaryote Dictyostelium discoideum has flourished in recent years. This chapter presents a glimpse of where this research stands, with emphasis on the cell biology of the phagocytic process and on the wealth of molecular genetic data that have been gathered. The basic mechanistic machinery and most of the underlying genes appear to be evolutionarily conserved, reflecting the fact that phagocytosis arose as an efficient way to ingest food in single protozoan cells devoid of a rigid cell wall. In spite of some differences, the signal transduction pathways regulating phagosome biogenesis are also emerging as ultimately similar between Dictyostelium and macrophages. Both cell types are hosts for many pathogenic invasive bacteria, which exploit phagocytosis to grow intracellularly. We present an overwiew, based on the analysis of mutants, on how Dictyostelium contributes as a genetic model system to decipher the complexity of host-pathogen interactions.


Assuntos
Dictyostelium/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Macrófagos/fisiologia , Fagocitose/fisiologia , Animais
12.
BMC Cell Biol ; 6: 43, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16336640

RESUMO

BACKGROUND: Ras proteins are guanine-nucleotide-binding enzymes that couple cell surface receptors to intracellular signaling pathways controlling cell proliferation and differentiation, both in lower and higher eukaryotes. They act as molecular switches by cycling between active GTP and inactive GDP-bound states, through the action of two classes of regulatory proteins: a) guanine nucleotide exchange factor (GEFs) and b) GTP-ase activating proteins (GAPs). Genome wide analysis of the lower eukaryote Dictyostelium discoideum revealed a surprisingly large number of Ras Guanine Nucleotide Exchange Factors (RasGEFs). RasGEFs promote the activation of Ras proteins by catalyzing the exchange of GDP for GTP, thus conferring to RasGEFs the role of main activator of Ras proteins. Up to date only four RasGEFs, which are all non-redundant either for growth or development, have been characterized in Dictyostelium. We report here the identification and characterization of a fifth non-redundant GEF, RasGEFM. RESULTS: RasGEFM is a multi-domain protein containing six poly-proline stretches, a DEP, RasGEFN and RasGEF catalytic domain. The rasGEFM gene is differentially expressed during growth and development. Inactivation of the gene results in cells that form small, flat aggregates and fail to develop further. Expression of genes required for aggregation is delayed. Chemotaxis towards cAMP is impaired in the mutant, due to inability to inhibit lateral pseudopods. Endogenous cAMP accumulates during early development to a much lower extent than in wild type cells. Adenylyl cyclase activation in response to cAMP pulses is strongly reduced, by contrast guanylyl cyclase is stimulated to higher levels than in the wild type. The actin polymerization response to cAMP is also altered in the mutant. Cyclic AMP pulsing for several hours partially rescues the mutant. In vitro experiments suggest that RasGEFM acts downstream of the cAMP receptor but upstream of the G protein. CONCLUSION: The data indicate that RasGEFM is involved in the establishment of the cAMP relay system. We propose that RasGEFM is a component of a Ras regulated pathway, which integrate signals acting as positive regulator for adenylyl cyclase and negative regulator for guanylyl cyclase. Altered guanylyl cyclase, combined with defective regulation of actin polymerization, results in altered chemotaxis.


Assuntos
Quimiotaxia , Dictyostelium/química , Dictyostelium/crescimento & desenvolvimento , Proteínas de Protozoários/fisiologia , Fatores ras de Troca de Nucleotídeo Guanina/fisiologia , Actinas/metabolismo , Adenilil Ciclases/metabolismo , Animais , AMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Mutação , Pseudópodes/fisiologia , Transdução de Sinais , Fatores ras de Troca de Nucleotídeo Guanina/deficiência , Fatores ras de Troca de Nucleotídeo Guanina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA