Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 600(7890): 759-764, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34880501

RESUMO

The σ2 receptor has attracted intense interest in cancer imaging1, psychiatric disease2, neuropathic pain3-5 and other areas of biology6,7. Here we determined the crystal structure of this receptor in complex with the clinical candidate roluperidone2 and the tool compound PB288. These structures templated a large-scale docking screen of 490 million virtual molecules, of which 484 compounds were synthesized and tested. We identified 127 new chemotypes with affinities superior to 1 µM, 31 of which had affinities superior to 50 nM. The hit rate fell smoothly and monotonically with docking score. We optimized three hits for potency and selectivity, and achieved affinities that ranged from 3 to 48 nM, with up to 250-fold selectivity versus the σ1 receptor. Crystal structures of two ligands bound to the σ2 receptor confirmed the docked poses. To investigate the contribution of the σ2 receptor in pain, two potent σ2-selective ligands and one potent σ1/σ2 non-selective ligand were tested for efficacy in a mouse model of neuropathic pain. All three ligands showed time-dependent decreases in mechanical hypersensitivity in the spared nerve injury model9, suggesting that the σ2 receptor has a role in nociception. This study illustrates the opportunities for rapid discovery of in vivo probes through structure-based screens of ultra large libraries, enabling study of underexplored areas of biology.


Assuntos
Neuralgia , Receptores sigma , Animais , Ligantes , Camundongos , Neuralgia/tratamento farmacológico , Receptores sigma/metabolismo , Relação Estrutura-Atividade
2.
Elife ; 102021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061020

RESUMO

Primary sensory neurons are generally considered the only source of dorsal horn calcitonin gene-related peptide (CGRP), a neuropeptide critical to the transmission of pain messages. Using a tamoxifen-inducible CalcaCreER transgenic mouse, here we identified a distinct population of CGRP-expressing excitatory interneurons in lamina III of the spinal cord dorsal horn and trigeminal nucleus caudalis. These interneurons have spine-laden, dorsally directed, dendrites, and ventrally directed axons. As under resting conditions, CGRP interneurons are under tonic inhibitory control, neither innocuous nor noxious stimulation provoked significant Fos expression in these neurons. However, synchronous, electrical non-nociceptive Aß primary afferent stimulation of dorsal roots depolarized the CGRP interneurons, consistent with their receipt of a VGLUT1 innervation. On the other hand, chemogenetic activation of the neurons produced a mechanical hypersensitivity in response to von Frey stimulation, whereas their caspase-mediated ablation led to mechanical hyposensitivity. Finally, after partial peripheral nerve injury, innocuous stimulation (brush) induced significant Fos expression in the CGRP interneurons. These findings suggest that CGRP interneurons become hyperexcitable and contribute either to ascending circuits originating in deep dorsal horn or to the reflex circuits in baseline conditions, but not in the setting of nerve injury.


The ability to sense pain is critical to our survival. Normally, pain is provoked by intense heat or cold temperatures, strong force or a chemical stimulus, for example, capsaicin, the pain-provoking substance in chili peppers. However, if nerve fibers in the arms or legs are damaged, pain can occur in response to touch or pressure stimuli that are normally painless. This hypersensitivity is called mechanical allodynia. A protein called calcitonin gene-related peptide, or CGRP, has been implicated in mechanical allodynia and other chronic pain conditions, such as migraine. CGRP is found in, and released from, the neurons that receive and transmit pain messages from tissues, such as skin and muscles, to the spinal cord. However, only a few distinct groups of CGRP-expressing neurons have been identified and it is unclear if these nerve cells also contribute to mechanical allodynia. To investigate this, Löken et al. genetically engineered mice so that all nerve cells containing CGRP produced red fluorescent light when illuminated with a laser. This included a previously unexplored group of CGRP-expressing neurons found in a part of the spinal cord that is known to receive information about non-painful stimuli. Using neuroanatomical methods, Löken et al. monitored the activity of these neurons in response to various stimuli, before and after a partial nerve injury. This partial injury was induced via a surgery that cut off a few, but not all, branches of a key leg nerve. The experiments showed that in their normal state, the CGRP-expressing neurons hardly responded to mechanical stimulation. In fact, it was difficult to establish what they normally respond to. However, after a nerve injury, brushing the mice's skin evoked significant activity in these cells. Moreover, when these CGRP cells were artificially stimulated, the stimulation induced hypersensitivity to mechanical stimuli, even when the mice had no nerve damage. These results suggest that this group of neurons, which are normally suppressed, can become hyperexcitable and contribute to the development of mechanical allodynia. In summary, Löken et al. have identified a group of nerve cells in the spinal cord that process mechanical information and contribute to touch-evoked pain. Future studies will identify the nerve circuits that are targeted by CGRP released from these nerve cells. These circuits represent a new therapeutic target for managing chronic pain conditions related to nerve damage, specifically mechanical allodynia, which is the most common complaint of patients with chronic pain.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Hiperalgesia/metabolismo , Interneurônios/metabolismo , Mecanotransdução Celular , Limiar da Dor , Células do Corno Posterior/metabolismo , Animais , Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/genética , Modelos Animais de Doenças , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Traumatismos dos Nervos Periféricos/fisiopatologia , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
3.
Nat Commun ; 11(1): 264, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937758

RESUMO

Paralleling the activation of dorsal horn microglia after peripheral nerve injury is a significant expansion and proliferation of macrophages around injured sensory neurons in dorsal root ganglia (DRG). Here we demonstrate a critical contribution of DRG macrophages, but not those at the nerve injury site, to both the initiation and maintenance of the mechanical hypersensitivity that characterizes the neuropathic pain phenotype. In contrast to the reported sexual dimorphism in the microglial contribution to neuropathic pain, depletion of DRG macrophages reduces nerve injury-induced mechanical hypersensitivity and expansion of DRG macrophages in both male and female mice. However, fewer macrophages are induced in the female mice and deletion of colony-stimulating factor 1 from sensory neurons, which prevents nerve injury-induced microglial activation and proliferation, only reduces macrophage expansion in male mice. Finally, we demonstrate molecular cross-talk between axotomized sensory neurons and macrophages, revealing potential peripheral DRG targets for neuropathic pain management.


Assuntos
Gânglios Espinais/imunologia , Macrófagos/fisiologia , Neuralgia/imunologia , Animais , Comunicação Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Hiperalgesia/imunologia , Imunossupressores/farmacologia , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microglia/metabolismo , Microglia/fisiologia , Traumatismos dos Nervos Periféricos/imunologia , Gravidez , Células Receptoras Sensoriais/metabolismo , Fatores Sexuais , Tacrolimo/análogos & derivados , Tacrolimo/farmacologia
4.
Neuron ; 102(5): 944-959.e3, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31030955

RESUMO

Hyperexcitability of the anterior cingulate cortex (ACC) is thought to drive aversion associated with chronic neuropathic pain. Here, we studied the contribution of input from the mediodorsal thalamus (MD) to ACC, using sciatic nerve injury and chemotherapy-induced mouse models of neuropathic pain. Activating MD inputs elicited pain-related aversion in both models. Unexpectedly, excitatory responses of layer V ACC neurons to MD inputs were significantly weaker in pain models compared to controls. This caused the ratio between excitation and feedforward inhibition elicited by MD input to shift toward inhibition, specifically for subcortically projecting (SC) layer V neurons. Furthermore, direct inhibition of SC neurons reproduced the pain-related aversion elicited by activating MD inputs. Finally, both the ability to elicit pain-related aversion and the decrease in excitation were specific to MD inputs; activating basolateral amygdala inputs produced opposite effects. Thus, chronic pain-related aversion may reflect activity changes in specific pathways, rather than generalized ACC hyperactivity.


Assuntos
Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiopatologia , Dor Crônica/fisiopatologia , Giro do Cíngulo/fisiopatologia , Núcleo Mediodorsal do Tálamo/fisiopatologia , Neuralgia/fisiopatologia , Animais , Antineoplásicos Fitogênicos/toxicidade , Dor Crônica/induzido quimicamente , Dor Crônica/etiologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos , Vias Neurais/fisiopatologia , Neuralgia/induzido quimicamente , Neuralgia/etiologia , Paclitaxel/toxicidade , Técnicas de Patch-Clamp , Nervo Isquiático/lesões
5.
J Comp Neurol ; 526(3): 480-495, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29134656

RESUMO

Transplanting embryonic precursors of GABAergic neurons from the medial ganglionic eminence (MGE) into adult mouse spinal cord ameliorates mechanical and thermal hypersensitivity in peripheral nerve injury models of neuropathic pain. Although Fos and transneuronal tracing studies strongly suggest that integration of MGE-derived neurons into host spinal cord circuits underlies recovery of function, the extent to which there is synaptic integration of the transplanted cells has not been established. Here, we used electron microscopic immunocytochemistry to assess directly integration of GFP-expressing MGE-derived neuronal precursors into dorsal horn circuitry in intact, adult mice with short- (5-6 weeks) or long-term (4-6 months) transplants. We detected GFP with pre-embedding avidin-biotin-peroxidase and GABA with post-embedding immunogold labeling. At short and long times post-transplant, we found host-derived synapses on GFP-immunoreactive MGE cells bodies and dendrites. The proportion of dendrites with synaptic input increased from 50% to 80% by 6 months. In all mice, MGE-derived terminals formed synapses with GFP-negative (host) cell bodies and dendrites and, unexpectedly, with some GFP-positive (i.e., MGE-derived) dendrites, possibly reflecting autoapses or cross talk among transplanted neurons. We also observed axoaxonic appositions between MGE and host terminals. Immunogold labeling for GABA confirmed that the transplanted cells were GABAergic and that some transplanted cells received an inhibitory GABAergic input. We conclude that transplanted MGE neurons retain their GABAergic phenotype and integrate dynamically into host-transplant synaptic circuits. Taken together with our previous electrophysiological analyses, we conclude that MGE cells are not GABA pumps, but alleviate pain and itch through synaptic release of GABA.


Assuntos
Neurônios GABAérgicos/fisiologia , Eminência Mediana/citologia , Células-Tronco Neurais/metabolismo , Medula Espinal/cirurgia , Transplante de Células-Tronco/métodos , Sinapses/fisiologia , Animais , Embrião de Mamíferos , Neurônios GABAérgicos/ultraestrutura , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/ultraestrutura , Eminência Mediana/embriologia , Camundongos , Camundongos Transgênicos , Microscopia Imunoeletrônica , Células-Tronco Neurais/ultraestrutura , Medula Espinal/citologia , Sinapses/ultraestrutura , Fatores de Tempo
6.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627644

RESUMO

BDNF is a critical contributor to neuronal growth, development, learning, and memory. Although extensively studied in the brain, BDNF is also expressed by primary afferent sensory neurons in the peripheral nervous system. Unfortunately, anatomical and functional studies of primary afferent-derived BDNF have been limited by the availability of appropriate molecular tools. Here, we used targeted, inducible molecular approaches to characterize the expression pattern of primary afferent BDNF and the extent to which it contributes to a variety of pain and itch behaviors. Using a BDNF-LacZ reporter mouse, we found that BDNF is expressed primarily by myelinated primary afferents and has limited overlap with the major peptidergic and non-peptidergic subclasses of nociceptors and pruritoceptors. We also observed extensive neuronal, but not glial, expression in the spinal cord dorsal horn. In addition, because BDNF null mice are not viable and even Cre-mediated deletion of BDNF from sensory neurons could have developmental consequences, here we deleted BDNF selectively from sensory neurons, in the adult, using an advillin-Cre-ER line crossed to floxed BDNF mice. We found that BDNF deletion in the adult altered few itch or acute and chronic pain behaviors, beyond sexually dimorphic phenotypes in the tail immersion, histamine, and formalin tests. Based on the anatomical distribution of sensory neuron-derived BDNF and its limited contribution to pain and itch processing, we suggest that future studies of primary afferent-derived BDNF should examine behaviors evoked by activation of myelinated primary afferents.


Assuntos
Vias Aferentes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Dor/metabolismo , Prurido/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Fator Neurotrófico Derivado do Encéfalo/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Histamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paclitaxel/toxicidade , Dor/induzido quimicamente , Medição da Dor , Prurido/induzido quimicamente
7.
J Comp Neurol ; 525(16): 3414-3428, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28649695

RESUMO

In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.


Assuntos
Aromatase/genética , Aromatase/metabolismo , Regulação da Expressão Gênica , Bulbo/citologia , Neurônios/enzimologia , Ciática/enzimologia , Corno Dorsal da Medula Espinal/citologia , Vias Aferentes/fisiologia , Animais , Modelos Animais de Doenças , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Transgênicos , Mielite/induzido quimicamente , Mielite/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estilbamidinas/metabolismo , Canais de Cátion TRPV/metabolismo
8.
J Allergy Clin Immunol ; 140(2): 454-464.e2, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28232084

RESUMO

BACKGROUND: Despite recent insights into the pathophysiology of acute and chronic itch, chronic itch remains an often intractable condition. Among major contributors to chronic itch is dysfunction of spinal cord gamma aminobutyric acidergic (GABAergic) inhibitory controls. OBJECTIVES: We sought to test the hypothesis that selective GABA agonists as well as cell transplant-derived GABA are antipruritic against acute itch and in a transgenic mouse model of atopic dermatitis produced by overexpression of the TH2 cell-associated cytokine, IL-31 (IL-31Tg mice). METHODS: We injected wild-type and IL-31Tg mice with combinations of GABA-A (muscimol) or GABA-B (baclofen) receptor agonists 15 to 20 minutes prior to injection of various pruritogens (histamine, chloroquine, or endothelin-1) and recorded spontaneous scratching before and after drug administration. We also tested the antipruritic properties of intraspinal transplantation of precursors of GABAergic interneurons in the IL-31Tg mice. RESULTS: Systemic muscimol or baclofen are antipruritic against both histamine-dependent and -independent pruritogens, but the therapeutic window using either ligand alone was very small. In contrast, combined subthreshold doses of baclofen and muscimol produced a significant synergistic antipruritic effect, with no sedation. Finally, transplant-mediated long-term enhancement of GABAergic signaling not only reduced spontaneous scratching in the IL-31Tg mice but also dramatically resolved the associated skin lesions. CONCLUSIONS: Although additional research is clearly needed, existing approved GABA agonists should be considered in the management of chronic itch, notably atopic dermatitis.


Assuntos
Antipruriginosos/uso terapêutico , Baclofeno/uso terapêutico , Dermatite Atópica/tratamento farmacológico , Agonistas de Receptores de GABA-A/uso terapêutico , Agonistas dos Receptores de GABA-B/uso terapêutico , Muscimol/uso terapêutico , Animais , Dermatite Atópica/metabolismo , Dermatite Atópica/terapia , Modelos Animais de Doenças , Sinergismo Farmacológico , Peptídeo Liberador de Gastrina/genética , Glutamato Descarboxilase/genética , Interleucinas/genética , Interneurônios/efeitos dos fármacos , Masculino , Eminência Mediana/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Receptores da Bombesina/genética , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Receptores da Neurocinina-1/genética , Pele/efeitos dos fármacos , Pele/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Transplante de Células-Tronco
9.
J Neurosci ; 36(46): 11634-11645, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852772

RESUMO

Spinal cord transplants of embryonic cortical GABAergic progenitor cells derived from the medial ganglionic eminence (MGE) can reverse mechanical hypersensitivity in the mouse models of peripheral nerve injury- and paclitaxel-induced neuropathic pain. Here, we used electrophysiology, immunohistochemistry, and electron microscopy to examine the extent to which MGE cells integrate into host circuitry and recapitulate endogenous inhibitory circuits. Whether the transplants were performed before or after nerve injury, the MGE cells developed into mature neurons and exhibited firing patterns characteristic of subpopulations of cortical and spinal cord inhibitory interneurons. Conversely, the transplanted cells preserved cortical morphological and neurochemical properties. We also observed a robust anatomical and functional synaptic integration of the transplanted cells into host circuitry in both injured and uninjured animals. The MGE cells were activated by primary afferents, including TRPV1-expressing nociceptors, and formed GABAergic, bicuculline-sensitive, synapses onto host neurons. Unexpectedly, MGE cells transplanted before injury prevented the development of mechanical hypersensitivity. Together, our findings provide direct confirmation of an extensive, functional synaptic integration of MGE cells into host spinal cord circuits. This integration underlies normalization of the dorsal horn inhibitory tone after injury and may be responsible for the prophylactic effect of preinjury transplants. SIGNIFICANCE STATEMENT: Spinal cord transplants of embryonic cortical GABAergic interneuron progenitors from the medial ganglionic eminence (MGE), can overcome the mechanical hypersensitivity produced in different neuropathic pain models in adult mice. Here, we examined the properties of transplanted MGE cells and the extent to which they integrate into spinal cord circuitry. Using electrophysiology, immunohistochemistry, and electron microscopy, we demonstrate that MGE cells, whether transplanted before or after nerve injury, develop into inhibitory neurons, are activated by nociceptive primary afferents, and form GABA-A-mediated inhibitory synapses with the host. Unexpectedly, cells transplanted into naive spinal cord prevented the development of nerve-injury-induced mechanical hypersensitivity. These results illustrate the remarkable plasticity of adult spinal cord and the potential of cell-based therapies against neuropathic pain.


Assuntos
Neurônios GABAérgicos/patologia , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Células-Tronco Neurais/transplante , Regeneração da Medula Espinal/fisiologia , Medula Espinal/fisiologia , Sinapses/patologia , Animais , Neurônios GABAérgicos/metabolismo , Hiperalgesia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Prosencéfalo/citologia , Transplante de Células-Tronco/métodos , Sinapses/metabolismo , Resultado do Tratamento
10.
PLoS One ; 10(10): e0140681, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26470056

RESUMO

Although neuroanatomical tracing studies have defined the origin and targets of major projection neurons (PN) of the central nervous system (CNS), there is much less information about the circuits that influence these neurons. Recently, genetic approaches that use Cre recombinase-dependent viral vectors have greatly facilitated such circuit analysis, but these tracing approaches are limited by the availability of Cre-expressing mouse lines and the difficulty in restricting Cre expression to discrete regions of the CNS. Here, we illustrate an alternative approach to drive Cre expression specifically in defined subsets of CNS projection neurons, so as to map both direct and indirect presynaptic inputs to these cells. The method involves a combination of Cre-dependent transneuronal viral tracers that can be used in the adult and that does not require genetically modified mice. To trigger Cre-expression we inject a Cre-expressing adenovirus that is retrogradely transported to the projection neurons of interest. The region containing the retrogradely labeled projection neurons is next injected with Cre-dependent pseudorabies or rabies vectors, which results in labeling of poly- and monosynaptic neuronal inputs, respectively. In proof-of-concept experiments, we used this novel tracing system to study the circuits that engage projection neurons of the superficial dorsal horn of the spinal cord and trigeminal nucleus caudalis, neurons of the parabrachial nucleus of the dorsolateral pons that project to the amygdala and cortically-projecting neurons of the lateral geniculate nucleus. Importantly, because this dual viral tracing method does not require genetically derived Cre-expressing mouse lines, inputs to almost any projection system can be studied and the analysis can be performed in larger animals, such as the rat.


Assuntos
Sistema Nervoso Central/citologia , Rede Nervosa/citologia , Técnicas de Rastreamento Neuroanatômico/métodos , Neurônios/citologia , Terminações Pré-Sinápticas , Animais , Sistema Nervoso Central/metabolismo , Viroses do Sistema Nervoso Central/virologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Raiva/virologia , Vírus da Raiva/genética , Vírus da Raiva/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução Genética/métodos , Transgenes , Proteína Vermelha Fluorescente
11.
Pain ; 156(6): 1084-1091, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25760475

RESUMO

Decreased spinal cord GABAergic inhibition is a major contributor to the persistent neuropathic pain that can follow peripheral nerve injury. Recently, we reported that restoring spinal cord GABAergic signaling by intraspinal transplantation of cortical precursors of GABAergic interneurons from the embryonic medial ganglionic eminence (MGE) can reverse the mechanical hypersensitivity (allodynia) that characterizes a neuropathic pain model in the mouse. We show that MGE cell transplants are also effective against both the mechanical allodynia and the heat hyperalgesia produced in a paclitaxel-induced chemotherapy model of neuropathic pain. To test the necessity of GABA release by the transplants, we also studied the utility of transplanting MGE cells from mice with a deletion of VGAT, the vesicular GABA transporter. Transplants from these mice, in which GABA is synthesized but cannot be stored or released, had no effect on mechanical hypersensitivity or heat hyperalgesia in the paclitaxel model. Taken together, these results demonstrate the therapeutic potential of GABAergic precursor cell transplantation in diverse neuropathic pain models and support our contention that restoration of inhibitory controls through release of GABA from the transplants is their mode of action.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Transplante de Células/métodos , Hiperalgesia , Paclitaxel/toxicidade , Medula Espinal/metabolismo , Ácido gama-Aminobutírico/metabolismo , Fator 3 Ativador da Transcrição/metabolismo , Animais , Contagem de Células , Modelos Animais de Doenças , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/cirurgia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medição da Dor , Limiar da Dor , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
12.
J Clin Invest ; 124(8): 3612-6, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25003193

RESUMO

The transmission of pruritoceptive (itch) messages involves specific neural circuits within the spinal cord that are distinct from those that transmit pain messages. These itch-specific circuits are tonically regulated by inhibitory interneurons in the dorsal horn. Consistent with these findings, it has previously been reported that loss of GABAergic interneurons in mice harboring a deletion of the transcription factor Bhlhb5 generates a severe, nonremitting condition of chronic itch. Here, we tested the hypothesis that the neuropathic itch in BHLHB5-deficient animals can be treated by restoring inhibitory controls through spinal cord transplantation and integration of precursors of cortical inhibitory interneurons derived from the embryonic medial ganglionic eminence. We specifically targeted the transplants to segments of the spinal cord innervated by areas of the body that were most severely affected. BHLHB5-deficient mice that received transplants demonstrated a substantial reduction of excessive scratching and dramatic resolution of skin lesions. In contrast, the scratching persisted and skin lesions worsened over time in sham-treated mice. Together, these results indicate that cell-mediated restoration of inhibitory controls has potential as a powerful, cell-based therapy for neuropathic itch that not only ameliorates symptoms of chronic itch, but also may modify disease.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Prurido/terapia , Medula Espinal/fisiopatologia , Medula Espinal/transplante , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Modelos Animais de Doenças , Neurônios GABAérgicos/patologia , Neurônios GABAérgicos/fisiologia , Neurônios GABAérgicos/transplante , Interneurônios/patologia , Interneurônios/fisiologia , Interneurônios/transplante , Masculino , Eminência Mediana/citologia , Eminência Mediana/embriologia , Camundongos , Camundongos Knockout , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/transplante , Prurido/patologia , Prurido/fisiopatologia , Medula Espinal/patologia
13.
J Neurosci ; 28(32): 7936-44, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18685019

RESUMO

Protein kinase C gamma (PKCgamma), which is concentrated in interneurons of the inner part of lamina II of the dorsal horn, has been implicated in injury-induced allodynia, a condition wherein pain is produced by innocuous stimuli. Although it is generally assumed that these interneurons receive input from the nonpeptidergic, IB4-positive subset of nociceptors, the fact that PKCgamma cells do not express Fos in response to noxious stimulation suggests otherwise. Here, we demonstrate that the terminal field of the nonpeptidergic population of nociceptors, in fact, lies dorsal to that of PKCgamma interneurons. There was also no overlap between the PKCgamma-expressing interneurons and the transganglionic tracer wheat germ agglutinin which, after sciatic nerve injection, labels all unmyelinated nociceptors. However, transganglionic transport of the beta-subunit of cholera toxin, which marks the medium-diameter and large-diameter myelinated afferents that transmit non-noxious information, revealed extensive overlap with the layer of PKCgamma interneurons. Furthermore, expression of a transneuronal tracer in myelinated afferents resulted in labeling of PKCgamma interneurons. Light and electron microscopic double labeling further showed that the VGLUT1 subtype of vesicular glutamate transmitter, which is expressed in myelinated afferents, marks synapses that are presynaptic to the PKCgamma interneurons. Finally, we demonstrate that a continuous non-noxious input, generated by walking on a rotarod, induces Fos in the PKCgamma interneurons. These results establish that PKCgamma interneurons are activated by myelinated afferents that respond to innocuous stimuli, which suggests that injury-induced mechanical allodynia is transmitted through a circuit that involves PKCgamma interneurons and non-nociceptive, VGLUT1-expressing myelinated primary afferents.


Assuntos
Interneurônios/fisiologia , Fibras Nervosas Mielinizadas/fisiologia , Neurônios Aferentes/fisiologia , Proteína Quinase C/metabolismo , Medula Espinal/fisiologia , Animais , Toxina da Cólera , Formaldeído/administração & dosagem , Formaldeído/farmacologia , Membro Posterior , Hiperestesia/fisiopatologia , Injeções , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Atividade Motora/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Aglutininas do Germe de Trigo
14.
Proc Natl Acad Sci U S A ; 99(23): 15148-53, 2002 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-12391304

RESUMO

Systems neuroscience addresses the complex circuits made by populations of neurons in the CNS and the cooperative function of these neurons. Improved approaches to the neuroanatomical analysis of CNS circuits are thus of great interest. In fact, significant advances in tract-tracing methods have recently been made by using transgenic mice that express transneuronal lectin tracers under the control of neuron-specific promoters. The utility of those animals, however, is limited to the CNS circuit influenced by the particular promoter. Here, we describe a new transgenic mouse that can be used for transneuronal tracing analysis of circuits in any region of the brain or spinal cord. The transgene in these mice results in expression of LacZ in neurons throughout the CNS. Excision of the LacZ gene by Cre-mediated recombination initiates expression of the lectin, wheat germ agglutinin (WGA). To illustrate the diverse uses of these ZW (LacZ-WGA) mice, we triggered WGA expression either by crossing the mice with two Cre-expressing transgenic mouse lines or by microinjecting a Cre-expressing adeno-associated virus into the cerebellum or cerebral cortex. Both approaches resulted in extensive WGA expression in the cell bodies and dendrites of neurons in which the recombination event occurred, as well as anterograde and transneuronal transport of the lectin to second and third order neurons. Because the lectin can be induced in developing and adult animals, and in all regions of the brain and spinal cord, these ZW may prove extremely valuable for numerous studies of CNS circuit analysis.


Assuntos
Encéfalo/fisiologia , Integrases/metabolismo , Neurônios/fisiologia , Proteínas Virais/metabolismo , Aglutininas do Germe de Trigo/genética , Animais , Dependovirus/genética , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transporte Proteico , Proteínas Recombinantes/metabolismo , Aglutininas do Germe de Trigo/metabolismo , beta-Galactosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA