Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728662

RESUMO

BACKGROUND AND AIMS: HEV is estimated to be responsible for 70,000 deaths annually, yet therapy options remain limited. In the pursuit of effective antiviral therapies, targeting viral entry holds promise and has proven effective for other viruses. However, the precise mechanisms and host factors required during HEV entry remain unclear. Cellular proteases have emerged as host factors required for viral surface protein activation and productive cell entry by many viruses. Hence, we investigated the functional requirement and therapeutic potential of cellular protease during HEV infection. APPROACH AND RESULTS: Using our established HEV cell culture model and subgenomic HEV replicons, we found that blocking lysosomal cathepsins (CTS) with small molecule inhibitors impedes HEV infection without affecting replication. Most importantly, the pan-cathepsin inhibitor K11777 suppressed HEV infections with an EC 50 of ~0.02 nM. Inhibition by K11777, devoid of notable toxicity in hepatoma cells, was also observed in HepaRG and primary human hepatocytes. Furthermore, through time-of-addition and RNAscope experiments, we confirmed that HEV entry is blocked by inhibition of cathepsins. Cathepsin L (CTSL) knockout cells were less permissive to HEV, suggesting that CTSL is critical for HEV infection. Finally, we observed cleavage of the glycosylated ORF2 protein and virus particles by recombinant CTSL. CONCLUSIONS: In summary, our study highlights the pivotal role of lysosomal cathepsins, especially CTSL, in the HEV entry process. The profound anti-HEV efficacy of the pan-cathepsin inhibitor K11777, especially with its notable safety profile in primary cells, further underscores its potential as a therapeutic candidate.

2.
J Virol ; 98(3): e0192123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38319104

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture-adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants that underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establish persistence. IMPORTANCE: Hepatitis C virus (HCV) infection remains a global health burden with 58 million people currently chronically infected. However, the detailed molecular mechanisms that underly persistence are incompletely defined. We utilized a long-term cell culture-adapted HCV, exhibiting enhanced replicative fitness in different human liver cell lines, in order to identify molecular principles by which HCV optimizes its replication fitness. Our experimental data revealed that cell culture adaptive mutations confer changes in the host response and usage of various host factors. The latter allows functional flexibility at different stages of the viral replication cycle. However, increased replicative fitness resulted in an increased activation of the innate immune system, which likely poses boundary for functional variation in authentic hepatocytes, explaining the observed attenuation of the adapted virus population in primary hepatocytes.


Assuntos
Aptidão Genética , Hepacivirus , Hepatócitos , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Mutação , Humanos , Células Cultivadas , Estresse do Retículo Endoplasmático , Aptidão Genética/genética , Aptidão Genética/imunologia , Hepacivirus/genética , Hepacivirus/crescimento & desenvolvimento , Hepacivirus/imunologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/imunologia , Hepatócitos/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , MicroRNAs/metabolismo , Inoculações Seriadas , Resposta a Proteínas não Dobradas , Tropismo Viral , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Replicação Viral/genética , Replicação Viral/imunologia
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045248

RESUMO

Hepatitis C virus (HCV) infection progresses to chronicity in the majority of infected individuals. Its high intra-host genetic variability enables HCV to evade the continuous selection pressure exerted by the host, contributing to persistent infection. Utilizing a cell culture adapted HCV population (p100pop) which exhibits increased replicative capacity in various liver cell lines, this study investigated virus and host determinants which underlie enhanced viral fitness. Characterization of a panel of molecular p100 clones revealed that cell culture adaptive mutations optimize a range of virus-host interactions, resulting in expanded cell tropism, altered dependence on the cellular co-factor micro-RNA 122 and increased rates of virus spread. On the host side, comparative transcriptional profiling of hepatoma cells infected either with p100pop or its progenitor virus revealed that enhanced replicative fitness correlated with activation of endoplasmic reticulum stress signaling and the unfolded protein response. In contrast, infection of primary human hepatocytes with p100pop led to a mild attenuation of virion production which correlated with a greater induction of cell-intrinsic antiviral defense responses. In summary, long-term passage experiments in cells where selective pressure from innate immunity is lacking improves multiple virus-host interactions, enhancing HCV replicative fitness. However, this study further indicates that HCV has evolved to replicate at low levels in primary human hepatocytes to minimize innate immune activation, highlighting that an optimal balance between replicative fitness and innate immune induction is key to establishing persistence.

4.
Hepatology ; 77(6): 2104-2117, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36745934

RESUMO

BACKGROUND AND AIMS: Being the most common cause of acute viral hepatitis with >20 million cases per year and 70,000 deaths annually, HEV presents a long-neglected and underinvestigated health burden. Although the entry process of viral particles is an attractive target for pharmacological intervention, druggable host factors to restrict HEV entry have not been identified so far. APPROACH AND RESULTS: Here we identify the EGF receptor (EGFR) as a novel host factor for HEV and reveal the significance of EGFR for the HEV entry process. By utilizing RNAi, chemical modulation with Food and Drug Administration-approved drugs, and ectopic expression of EGFR, we revealed that EGFR is critical for HEV infection without affecting HEV RNA replication or assembly of progeny virus. We further unveiled that EGFR itself and its ligand-binding domain, rather than its signaling function, is responsible for the proviral effect. Modulation of EGF expression in HepaRG cells and primary human hepatocytes affected HEV infection. CONCLUSIONS: Taken together, our study provides novel insights into the life cycle of HEV and identified EGFR as a possible target for future antiviral strategies against HEV.


Assuntos
Vírus da Hepatite E , Hepatócitos , Humanos , Hepatócitos/metabolismo , Antivirais/farmacologia , Receptores ErbB/metabolismo , Interferência de RNA , Transdução de Sinais , Vírus da Hepatite E/genética , Replicação Viral
5.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969792

RESUMO

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Assuntos
Vírus da Hepatite E , Ribavirina , Proteínas Virais , Linhagem Celular Tumoral , Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Hepatócitos/virologia , Humanos , Recidiva Local de Neoplasia/genética , Nucleotídeos , RNA Viral , Ribavirina/farmacologia , Proteínas Virais/genética , Replicação Viral
6.
Antiviral Res ; 204: 105359, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35728703

RESUMO

Hepatitis E virus (HEV) infections are a leading cause of acute viral hepatitis in humans and pose a considerable threat to public health. Current standard of care treatment is limited to the off-label use of nucleoside-analog ribavirin (RBV) and PEGylated interferon-α, both of which are associated with significant side effects and provide limited efficacy. In the past few years, a promising natural product compound class of eukaryotic initiation factor 4A (eIF4A) inhibitors (translation initiation inhibitors), called rocaglates, were identified as antiviral agents against RNA virus infections. In the present study, we evaluated a total of 205 synthetic rocaglate derivatives from the BU-CMD compound library for their antiviral properties against HEV. At least eleven compounds showed inhibitory activities against the HEV genotype 3 (HEV-3) subgenomic replicon below 30 nM (EC50 value) as determined by Gaussia luciferase assay. Three amidino-rocaglates (ADRs) (CMLD012073, CMLD012118, and CMLD012612) possessed antiviral activity against HEV with EC50 values between 1 and 9 nM. In addition, these three selected compounds inhibited subgenomic replicons of different genotypes (HEV-1 [Sar55], wild boar HEV-3 [83-2] and human HEV-3 [p6]) in a dose-dependent manner and at low nanomolar concentrations. Furthermore, tested ADRs tend to be better tolerated in primary hepatocytes than hepatoma cancer cell lines and combination treatment of CMLD012118 with RBV and interferon-α (IFN-α) showed that CMLD012118 acts additive to RBV and IFN-α treatment. In conclusion, our results indicate that ADRs, especially CMLD012073, CMLD012118, and CMLD012612 may prove to be potential therapeutic candidates for the treatment of HEV infections and may contribute to the discovery of pan-genotypic inhibitors in the future.


Assuntos
Vírus da Hepatite E , Hepatite E , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite E/tratamento farmacológico , Humanos , Interferon-alfa/farmacologia , Interferon-alfa/uso terapêutico , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Replicação Viral
7.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831021

RESUMO

Hepatitis E virus infections are the leading cause of viral hepatitis in humans, contributing to an estimated 3.3 million symptomatic cases and almost 44,000 deaths annually. Recently, HEV infections have been found to result in chronic liver infection and cirrhosis in severely immunocompromised patients, suggesting the possibility of HEV-induced hepatocarcinogenesis. While HEV-associated formation of HCC has rarely been reported, the expansion of HEV's clinical spectrum and the increasing evidence of chronic HEV infections raise questions about the connection between HEV and HCC. The present review summarizes current clinical evidence of the relationship between HEV and HCC and discusses mechanisms of virus-induced HCC development with regard to HEV pathogenesis. We further elucidate why the development of HEV-induced hepatocellular carcinoma has so rarely been observed and provide an outlook on possible experimental set-ups to study the relationship between HEV and HCC formation.

8.
Viruses ; 13(8)2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34452320

RESUMO

Since its first discovery by Arnold Theiler in 1918, serum hepatitis also known as Theiler's disease has been reported worldwide, causing idiopathic acute hepatitis and liver failure in horses. Recent studies have suggested a novel parvovirus, named equine parvovirus hepatitis (EqPV-H), to be associated with Theiler's disease. Despite the severity and potential fatality of EqPV-H infection, little is known about the possibility of developing chronic infections and putative cross-species infection of equine sister species. In the present longitudinal study, we employed qPCR analysis, serology, and biochemical testing as well as pathology examination of liver biopsies and sequence analysis to investigate potential chronic EqPV-H infection in an isolated study cohort of in total 124 horses from Germany over five years (2013-2018). Importantly, our data suggest that EqPV-H viremia can become chronic in infected horses that do not show biochemical and pathological signs of liver disease. Phylogenetic analysis by maximum likelihood model also confirms high sequence similarity and nucleotide conservation of the multidomain nuclear phosphoprotein NS1 sequences from equine serum samples collected between 2013-2018. Moreover, by examining human, zebra, and donkey sera for the presence of EqPV-H DNA and VP1 capsid protein antibodies, we found evidence for cross-species infection in donkey, but not to human and zebra. In conclusion, this study provides proof for the occurrence of persistent EqPV-H infection in asymptomatic horses and cross-species EqPV-H detection in donkeys.


Assuntos
Hepatite Viral Animal/sangue , Hepatite Viral Animal/fisiopatologia , Infecções por Parvoviridae/fisiopatologia , Infecções por Parvoviridae/veterinária , Parvovirus/genética , Viremia/veterinária , Animais , Biópsia , Estudos de Coortes , DNA Viral/genética , Doenças dos Cavalos/virologia , Cavalos , Fígado/patologia , Fígado/virologia , Estudos Longitudinais , Infecções por Parvoviridae/sangue , Parvovirus/classificação , Infecção Persistente , Filogenia
9.
Sci Signal ; 14(683)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006609

RESUMO

Growth factor-dependent vesicular dynamics allow cells to regulate the spatial distribution of growth factor receptors and thereby their coupling to downstream signaling effectors that guide cellular responses. We found that the ErbB ligands epidermal growth factor (EGF) and heregulin (HRG) generated distinct spatiotemporal patterns of cognate receptor activities to activate distinct subcellular pools of the extracellular signal-regulated kinase (Erk). Sustained plasma membrane activity of the receptor tyrosine kinases ErbB2/ErbB3 signaled to Erk complexed with the scaffold protein KSR to promote promigratory EphA2 phosphorylation and cellular motility upon HRG stimulation. In contrast, receptor-saturating EGF stimuli caused proliferation-inducing transient activation of cytoplasmic Erk due to the rapid internalization of EGF receptors (EGFR or ErbB1) toward endosomes. Paradoxically, promigratory signaling mediated by Erk complexed to KSR was sustained at low EGF concentrations by vesicular recycling that maintained steady-state amounts of active, phosphorylated EGFR at the plasma membrane. Thus, the effect of ligand identity and concentration on determining ErbB vesicular dynamics constitutes a mechanism by which cells can transduce growth factor composition through spatially distinct Erk pools to enable functionally diverse cellular responses.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Receptor ErbB-2 , Movimento Celular , Fator de Crescimento Epidérmico/metabolismo , Fosforilação , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais
10.
J Hepatol ; 73(3): 549-558, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32294532

RESUMO

BACKGROUND & AIMS: HCV is a positive-strand RNA virus that primarily infects human hepatocytes. Recent studies have reported that C19orf66 is expressed as an interferon (IFN)-stimulated gene; however, the intrinsic regulation of this gene within the liver as well as its antiviral effects against HCV remain elusive. METHODS: Expression of C19orf66 was quantified in both liver biopsies and primary human hepatocytes, with or without HCV infection. Mechanistic studies of the potent anti-HCV phenotype mediated by C19orf66 were conducted using state-of-the-art virological, biochemical and genetic approaches, as well as correlative light and electron microscopy and transcriptome and proteome analysis. RESULTS: Upregulation of C19orf66 mRNA was observed in both primary human hepatocytes upon HCV infection and in the livers of patients with chronic hepatitis C (CHC). In addition, pegIFNα/ribavirin therapy induced C19orf66 expression in patients with CHC. Transcriptomic profiling and whole cell proteomics of hepatoma cells ectopically expressing C19orf66 revealed no induction of other antiviral genes. Expression of C19orf66 restricted HCV infection, whereas CRIPSPR/Cas9 mediated knockout of C19orf66 attenuated IFN-mediated suppression of HCV replication. Co-immunoprecipitation followed by mass spectrometry identified a stress granule protein-dominated interactome of C19orf66. Studies with subgenomic HCV replicons and an expression system revealed that C19orf66 expression impairs HCV-induced elevation of phosphatidylinositol-4-phosphate, alters the morphology of the viral replication organelle (termed the membranous web) and thereby targets viral RNA replication. CONCLUSION: C19orf66 is an IFN-stimulated gene, which is upregulated in hepatocytes within the first hours post IFN treatment or HCV infection in vivo. The encoded protein possesses specific antiviral activity against HCV and targets the formation of the membranous web. Our study identifies C19orf66 as an IFN-inducible restriction factor with a novel antiviral mechanism that specifically targets HCV replication. LAY SUMMARY: Interferon-stimulated genes are thought to be important to for antiviral immune responses to HCV. Herein, we analysed C19orf66, an interferon-stimulated gene, which appears to inhibit HCV replication. It prevents the HCV-induced elevation of phosphatidylinositol-4-phosphate and alters the morphology of HCV's replication organelle.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/genética , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/metabolismo , Interferons/uso terapêutico , Organelas/virologia , Proteínas de Ligação a RNA/metabolismo , Compartimentos de Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Adulto , Linhagem Celular Tumoral , Feminino , Técnicas de Inativação de Genes , Genótipo , Células HEK293 , Hepatite C Crônica/patologia , Hepatite C Crônica/virologia , Hepatócitos/metabolismo , Humanos , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Organelas/efeitos dos fármacos , Organelas/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Replicon/efeitos dos fármacos , Replicon/genética , Ribavirina/uso terapêutico , Resultado do Tratamento , Replicação Viral/genética
11.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31896581

RESUMO

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Assuntos
Vírus da Hepatite E/genética , Vírus da Hepatite E/fisiologia , Hepatite E/metabolismo , Hepatócitos/virologia , Animais , Antivirais/farmacologia , Carcinoma Hepatocelular , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Genótipo , Células Hep G2 , Hepatite E/virologia , Vírus da Hepatite E/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Replicon , Ribavirina/metabolismo , Suínos , Carga Viral , Replicação Viral
12.
Sci Signal ; 11(541)2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065026

RESUMO

The ability of cells to adapt their response to growth factors in relation to their environment is an essential aspect of tissue development and homeostasis. We found that signaling mediated by the Eph family of receptor tyrosine kinases from cell-cell contacts changed the cellular response to the growth factor EGF by modulating the vesicular trafficking of its receptor, EGFR. Eph receptor activation trapped EGFR in Rab5-positive early endosomes by inhibiting Akt-dependent vesicular recycling. By altering the spatial distribution of EGFR activity, EGF-promoted Akt signaling from the plasma membrane was suppressed, thereby inhibiting cell migration. In contrast, ERK signaling from endosomal EGFR was preserved to maintain a proliferative response to EGF stimulation. We also found that soluble extracellular signals engaging the G protein-coupled receptor Kiss1 (Kiss1R) similarly suppressed EGFR vesicular recycling to inhibit EGF-promoted migration. Eph or Kiss1R activation also suppressed EGF-promoted migration in Pten-/- mouse embryonic fibroblasts, which exhibit increased constitutive Akt activity, and in MDA-MB-231 triple-negative breast cancer cells, which overexpress EGFR. The cellular environment can thus generate context-dependent responses to EGF stimulation by modulating EGFR vesicular trafficking dynamics.


Assuntos
Neoplasias da Mama/patologia , Movimento Celular , Vesículas Citoplasmáticas/fisiologia , Fator de Crescimento Epidérmico/farmacologia , Receptores da Família Eph/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células Cultivadas , Endocitose , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Camundongos , PTEN Fosfo-Hidrolase/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores da Família Eph/genética , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Transdução de Sinais
13.
Cell Syst ; 7(3): 295-309.e11, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30145116

RESUMO

The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.


Assuntos
Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Retículo Endoplasmático/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Biologia Computacional , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Retroalimentação Fisiológica , Humanos , Células MCF-7 , Microscopia Confocal , Modelos Teóricos , Fosforilação , Mapas de Interação de Proteínas , Transporte Proteico , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Transdução de Sinais , Análise de Célula Única
14.
Elife ; 42015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26609808

RESUMO

Autocatalytic activation of epidermal growth factor receptor (EGFR) coupled to dephosphorylating activity of protein tyrosine phosphatases (PTPs) ensures robust yet diverse responses to extracellular stimuli. The inevitable tradeoff of this plasticity is spontaneous receptor activation and spurious signaling. We show that a ligand-mediated switch in EGFR trafficking enables suppression of spontaneous activation while maintaining EGFR's capacity to transduce extracellular signals. Autocatalytic phosphorylation of tyrosine 845 on unliganded EGFR monomers is suppressed by vesicular recycling through perinuclear areas with high PTP1B activity. Ligand-binding results in phosphorylation of the c-Cbl docking tyrosine and ubiquitination of the receptor. This secondary signal relies on EGF-induced EGFR self-association and switches suppressive recycling to directional trafficking. The re-routing regulates EGFR signaling response by the transit-time to late endosomes where it is switched-off by high PTP1B activity. This ubiquitin-mediated switch in EGFR trafficking is a uniquely suited solution to suppress spontaneous activation while maintaining responsiveness to EGF.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Humanos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA