Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37607769

RESUMO

BACKGROUND: Multiple myeloma (MM) cancers originate from plasma cells that have passed through the germinal center reaction where somatic hypermutation of Ig V regions takes place. Myeloma protein V regions often express many mutations and are thus a rich source of neoantigens (traditionally called idiotopes (Id)). Therefore, these are highly tumor-specific and excellent targets for immunotherapy. METHODS: We have developed a DNA Id vaccine which as translated protein targets conventional dendritic cells (cDC) for CCL3-mediated delivery of myeloma protein V regions in a single-chain fragment variable (scFv) format. Vaccine efficacy was studied in the mouse MM model, mineral oil-induced plasmacytoma 315.BM. RESULTS: The Id vaccine protected mice against a challenge with MM cells. Moreover, the vaccine had a therapeutic effect. However, in some of the vaccinated mice, MM cells not producing H chains escaped rejection, resulting in free light chain (FLC) MM. Depletion of CD8+ T cells abrogated vaccine efficacy, and protection was observed to be dependent on cDC1s, using Batf3-/- mice. Modifications of scFv in the vaccine demonstrated that CD8+ T cells were specific for two mutated VH sequences. CONCLUSIONS: VH neoantigen-specific CD8+ T cells elicited by CCL3-containing Id vaccines had a therapeutic effect against MM in a mouse model. MM cells could escape rejection by losing expression of the H chain, thus giving rise to FLC MM.


Assuntos
Mieloma Múltiplo , Vacinas de DNA , Animais , Camundongos , Mieloma Múltiplo/terapia , Linfócitos T CD8-Positivos , Imunoterapia , Células Dendríticas
2.
Cell Rep ; 39(9): 110901, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649357

RESUMO

Antibodies are important for vaccine efficacy. Targeting antigens to antigen-presenting cells (APCs) increases antibody levels. Here, we explore the role of antigen valency in MHC class II (MHCII)-targeted vaccines delivered as DNA. We design heterodimeric proteins that carry either two identical (bivalent vaccines), or two different antigens (monovalent vaccines). Bivalent vaccines with two identical influenza hemagglutinins (HA) elicit higher amounts of anti-HA antibodies in mice than monovalent versions with two different HAs. Bivalent vaccines increase the levels of germinal center (GC) B cells and long-lived plasma cells. Only HA-bivalent vaccines completely protect mice against challenge with homologous influenza virus. Similar results are obtained with other antigens by targeting CD11c and Xcr1 on dendritic cells (DCs) or when administering the vaccine as protein with adjuvant. Bivalency probably increases B cell responses by cross-linking BCRs in readily observable DC-B cell synapses. These results are important for generating potent APC-targeted vaccines.


Assuntos
Vacinas Anticâncer , Vacinas contra Influenza , Vacinas de DNA , Animais , Anticorpos Antivirais , Células Apresentadoras de Antígenos , Hemaglutininas , Camundongos , Vacinas Combinadas , Vacinas de DNA/genética
3.
Front Immunol ; 12: 720550, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733274

RESUMO

Targeted delivery of antigen to antigen presenting cells (APCs) is an efficient way to induce robust antigen-specific immune responses. Here, we present a novel DNA vaccine that targets the Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5), a leading blood-stage antigen of the human malaria pathogen, to APCs. The vaccine is designed as bivalent homodimers where each chain is composed of an amino-terminal single chain fragment variable (scFv) targeting unit specific for major histocompatibility complex class II (MHCII) expressed on APCs, and a carboxyl-terminal antigenic unit genetically linked by the dimerization unit. This vaccine format, named "Vaccibody", has previously been successfully applied for antigens from other infectious diseases including influenza and HIV, as well as for tumor antigens. Recently, the crystal structure and key functional antibody epitopes for the truncated version of PfRH5 (PfRH5ΔNL) were characterized, suggesting PfRH5ΔNL to be a promising candidate for next-generation PfRH5 vaccine design. In this study, we explored the APC-targeting strategy for a PfRH5ΔNL-containing DNA vaccine. BALB/c mice immunized with the targeted vaccine induced higher PfRH5-specific IgG1 antibody responses than those vaccinated with a non-targeted vaccine or antigen alone. The APC-targeted vaccine also efficiently induced rapid IFN-γ and IL-4 T cell responses. Furthermore, the vaccine-induced PfRH5-specific IgG showed inhibition of growth of the P. falciparum 3D7 clone parasite in vitro. Finally, sera obtained after vaccination with this targeted vaccine competed for the same epitopes as PfRH5-specific mAbs from vaccinated humans. Robust humoral responses were also induced by a similar P. vivax Duffy-binding protein (PvDBP)-containing targeted DNA vaccine. Our data highlight a novel targeted vaccine platform for the development of vaccines against blood-stage malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Células Apresentadoras de Antígenos/imunologia , Proteínas de Transporte/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Linfócitos T/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Especificidade de Anticorpos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos de Protozoários/imunologia , Modelos Animais de Doenças , Epitopos/imunologia , Feminino , Ordem dos Genes , Vetores Genéticos/genética , Imunização , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Camundongos , Linfócitos T/metabolismo
4.
Mol Ther Methods Clin Dev ; 17: 378-392, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32128342

RESUMO

Immunogenicity of DNA vaccines can be increased by constructing the DNA in such a way that it encodes secreted homodimeric fusion proteins that target antigen-presenting cells (APCs). In this study, we have developed novel APC-targeting vaccine molecules with an increased flexibility due to introduction of a heterodimerization motif. The heterodimeric proteins permit four different fusions within a single molecule, thus allowing expression of two different APC-targeting moieties and two different antigens. Two types of heterodimeric fusion proteins were developed that employed either the ACID/BASE or the Barnase/Barstar motifs, respectively. The ACID/BASE heterodimeric vaccines conferred protection against challenges with either influenza virus or tumor cells in separate preclinical models. The ACID/BASE motif was flexible since a large number of different targeting moieties and antigens could be introduced with maintenance of specificity, antigenicity, and secretion. APC-targeting ACID/BASE vaccines expressing two different antigens induced antibody and T cell responses against either of the two antigens. Heterodimeric ACID/BASE DNA vaccines were of approximately the same potency as previously reported homodimeric DNA vaccines. The flexibility and potency of the ACID/BASE format suggest that it could be a useful platform for DNA vaccines that encode APC-targeting fusion proteins.

5.
Int J Nanomedicine ; 14: 8285-8302, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31802866

RESUMO

BACKGROUND: Curcumin has been widely used owing to its various medicinal properties including antitumor effects. However, its clinical application is limited by its instability, poor solubility and low bioavailability. Folic acid (FA)-functionalized nanoformulations may enhance the sustained release of an anticancer drug (curcumin) by tumor-specific targeting to improve therapeutic benefit. This study aims to design a nanoconjugate (NC) comprised of folate-curcumin-loaded gold-polyvinylpyrrolidone nanoparticles (FA-CurAu-PVP NPs) for targeted delivery in breast cancer model systems. METHODS: We developed curcumin-loaded FA-functionalized Au-PVP NCs by layer-by-layer assembly. The folic acid-curcumin Au-PVP NCs (FA-CurAu-PVP NCs) were characterized by ultraviolet-visible spectra, Fourier transform infrared spectroscopy, X-ray powder diffraction and thermogravimetric analysis. In vitro anticancer and antimigratory effects of NCs were examined by performing MTT and wound migration assays. The in vivo antitumor efficacy of NCs was investigated using a preclinical breast cancer orthotopic mouse model. RESULTS: Curcumin (40 µg/mL) was loaded along with conjugation of folate onto Au-PVP NPs to form FA-CurAu-PVP NCs. The size and charge of the NCs were increased gradually through layer-by-layer assembly and showed 80% release of curcumin at acidic pH. The NC did not show aggregation when incubated with human serum and mimicked an intrinsic peroxidase-like property in the presence of 3,3',5,5'-tetramethylbenzidine substrate. The MTT data using these NCs showed efficient anticancer activity at lower doses in estrogen/progesterone receptor (ER/PR)-negative cells compared with ER/PR-positive cells. Furthermore, the NCs did not show cytotoxicity at the investigated concentration in human breast epithelial and mouse fibroblast cell lines. They showed inhibitory effects on cell migration and high antitumor efficacy in in vivo analysis. CONCLUSION: These results suggest that folate-based tumor targeting using CurAu-PVP NCs is a promising approach for tumor-specific therapy of breast cancer without harming normal cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ouro/química , Nanopartículas Metálicas/química , Polímeros/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Camundongos , Nanoconjugados/química , Povidona/química , Soro/metabolismo
6.
Proc Natl Acad Sci U S A ; 116(51): 25850-25859, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796587

RESUMO

The B cell receptors (BCRs) for antigen express variable (V) regions that are enormously diverse, thus serving as markers on individual B cells. V region-derived idiotypic (Id) peptides can be displayed as pId:MHCII complexes on B cells for recognition by CD4+ T cells. It is not known if naive B cells spontaneously display pId:MHCII in vivo or if BCR ligation is required for expression, thereby enabling collaboration between Id+ B cells and Id-specific T cells. Here, using a mouse model, we show that naive B cells do not express readily detectable levels of pId:MHCII. However, BCR ligation by Ag dramatically increases physical display of pId:MHCII, leading to activation of Id-specific CD4+ T cells, extrafollicular T-B cell collaboration and some germinal center formation, and production of Id+ IgG. Besides having implications for immune regulation, the results may explain how persistent activation of self-reactive B cells induces the development of autoimmune diseases and B cell lymphomas.


Assuntos
Antígenos de Histocompatibilidade Classe II/metabolismo , Neuropeptídeos/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T/imunologia , Animais , Anticorpos Anti-Idiotípicos/genética , Anticorpos Anti-Idiotípicos/imunologia , Doenças Autoimunes/metabolismo , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/metabolismo , Modelos Animais de Doenças , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C
7.
Immunohorizons ; 2(1): 38-53, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31022690

RESUMO

Upon APC-targeted DNA vaccination, transfected cells secrete fusion proteins with targeting units specific for surface molecules on APC. In this study, we have tested several different targeting units for their ability to influence the magnitude and subclass of Ab responses to hemagglutinin from influenza A virus. The experiments employed bivalent homodimeric Ig-based molecules (vaccibodies). The overall efficiency in BALB/c mice depended on the targeting units in the following order: αMHC class II > αCD11c > αCD40 > Xcl-1 = MIP-1α > FliC > GM-CSF > Flt-3L > αDEC205. GM-CSF induced mainly IgG1, whereas Xcl1, MIP-1α, αCD40, and αDEC205 induced predominantly IgG2a. A more balanced mixture of IgG1 and IgG2a was observed with αCD11c, αMHC class II, Flt-3L, and FliC. Similar results of IgG subclass-skewing were obtained in Th1-prone C57BL/6 mice with a more limited panel of vaccines. IgG1 responses in BALB/c occurred early after immunization but declined relatively rapidly over time. IgG2a responses appeared later but lasted longer (>252 d) than IgG1 responses. The most efficient targeting units elicited short- and long-term protection against PR8 influenza (H1N1) virus in BALB/c mice. The results suggest that targeting of Xcr1+ conventional type 1 dendritic cells preferentially induces IgG2a responses, whereas simultaneous targeting of several dendritic cell subtypes also induces IgG1 responses. The induction of distinct subclass profiles by different surface molecules supports the APC-B cell synapse hypothesis. The results may contribute to generation of more potent DNA vaccines that elicit high levels of Abs with desired biologic effector functions.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Vacinas de DNA/imunologia , Animais , Anticorpos Antivirais/biossíntese , Formação de Anticorpos , Linhagem Celular , Células Dendríticas/imunologia , Células HEK293 , Hemaglutininas/imunologia , Humanos , Vacinas contra Influenza/genética , Macrófagos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transfecção
8.
PLoS One ; 7(9): e45393, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028981

RESUMO

It is known that targeting of antigen to antigen presenting cells (APC) increases immune responses. However, it is unclear if more than one APC-specific targeting unit in the antigenic molecule will increase responses. To address this issue, we have here made heterodimeric vaccine molecules that each express four different fusion subunits. The bacterial ribonuclease barnase and its inhibitor barstar interact with high affinity, and the barnase-barstar complex was therefore used as a dimerization unit. Barnase and barstar were fused N-terminally with single chain fragment variable (scFv)s targeting units specific for either MHC class II molecules on APC or the hapten 5-iodo-4-hydroxy-3-nitrophenylacetyl (NIP). C-terminal antigenic fusions were either the fluorescent protein mCherry or scFv(315) derived from myeloma protein M315. The heterodimeric vaccine molecules were formed both in vitro and in vivo. Moreover, the four different fused moieties appeared to fold correctly since they retained their specificity and function. DNA vaccination with MHC class II-targeted vaccine induced higher mCherry-specific IgG1 responses compared to non-targeted control. Since mCherry and MHC class II are in trans in this heterodimer, this suggests that heterodimeric proteins are formed in vivo without prior protein purification. Surprisingly, one targeting moiety was sufficient for the increased IgG1 response, and addition of a second targeting moiety did not increase responses. Similar results were found in in vitro T cell assays; vaccine molecules with one targeting unit were as potent as those with two. In combination with the easy cloning strategy, the heterodimeric barnase-barstar vaccine molecule could provide a flexible platform for development of novel DNA vaccines with increased potency.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Ribonucleases/imunologia , Vacinas de DNA/imunologia , Animais , Proteínas de Bactérias/genética , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Eletroporação , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Linfócitos T/imunologia
9.
J Immunol ; 178(3): 1589-97, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17237408

RESUMO

Abs of the secretory Ig (SIg) system reinforce numerous innate defense mechanisms to protect the mucosal surfaces against microbial penetration. SIgs are generated by a unique cooperation between two distinct cell types: plasma cells that produce polymers of IgA or IgM (collectively called pIgs) and polymeric Ig receptor (pIgR)-expressing secretory epithelial cells that mediate export of the pIgs to the lumen. Apical delivery of SIgs occurs by cleavage of the pIgR to release its extracellular part as a pIg-bound secretory component, whereas free secretory components are derived from an unoccupied receptor. The joining chain (J chain) is crucial in pIg/SIg formation because it serves to polymerize Igs and endows them with a binding site for the pIgR. In this study, we show that the J chain from divergent tetrapods including mammals, birds, and amphibians efficiently induced polymerization of human IgA, whereas the J chain from nurse shark (a lower vertebrate) did not. Correctly assembled polymers showed high affinity to human pIgR. Sequence analysis of the J chain identified two regions, conserved only in tetrapods, which by mutational analysis were found essential for pIgA-pIgR complexing. Furthermore, we isolated and characterized pIgR from the amphibian Xenopus laevis and demonstrated that its pIg binding domain showed high affinity to human pIgA. These results showed that the functional site of interaction between pIgR, J chain and Ig H chains is conserved in these species and suggests that SIgs originated in an ancestor common to tetrapods.


Assuntos
Formação de Anticorpos , Sequência Conservada/imunologia , Imunoglobulina A Secretora/imunologia , Cadeias J de Imunoglobulina/metabolismo , Imunoglobulina M/imunologia , Receptores de Imunoglobulina Polimérica/metabolismo , Anfíbios , Animais , Sítios de Ligação/imunologia , Aves , Humanos , Imunoglobulina A Secretora/genética , Imunoglobulina M/genética , Mamíferos , Filogenia , Ligação Proteica/genética , Ligação Proteica/imunologia , Receptores de Imunoglobulina Polimérica/genética , Componente Secretório
10.
J Biol Chem ; 281(11): 7075-81, 2006 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-16423833

RESUMO

The polymeric Ig receptor (pIgR), also called membrane secretory component (SC), mediates epithelial transcytosis of polymeric immunoglobulins (pIgs). J Chain-containing polymeric IgA (pIgA) and pentameric IgM bind pIgR at the basolateral epithelial surface. After transcytosis, the extracellular portion of the pIgR is cleaved at the apical side, either complexed with pIgs as bound SC or unoccupied as free SC. This transport pathway may be exploited to target bioactive molecules to the mucosal surface. To identify small peptide motifs with specific affinity to human pIgR, we used purified free SC and selection from randomized, cysteine-flanked 6- and 9-mer phage-display libraries. One of the selected phages, called C9A, displaying the peptide CVVWMGFQQVC, showed binding both to human free SC and SC complexed with pIgs. However, the pneumococcal surface protein SpsA (Streptococcus pneumoniae secretory IgA-binding protein), which binds human SC at a site distinct from the pIg binding site, competed with the C9A phage for binding to SC. The C9A phage showed greatly increased transport through polarized Madin-Darby canine kidney cells transfected with human pIgR. This transport was not affected by pIgA nor did it inhibit pIgR-mediated pIgA transcytosis. A free peptide of identical amino acid sequence as that displayed by the C9A phage inhibited phage interaction with SC. This implied that the C9A peptide sequence may be exploited for pIgR-mediated epithelial transport without interfering with secretory immunity.


Assuntos
Imunoglobulina A/química , Peptídeos/química , Receptores de Imunoglobulina Polimérica/química , Animais , Bacteriófagos/metabolismo , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Cisteína/química , Dimerização , Cães , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Epitélio/metabolismo , Humanos , Camundongos , Biblioteca de Peptídeos , Ligação Proteica , Streptococcus pneumoniae/metabolismo , Transfecção
11.
J Biol Chem ; 279(8): 6296-304, 2004 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-14660617

RESUMO

Streptococcus pneumoniae binds to the ectodomain of the human polymeric Ig receptor (pIgR), also known as secretory component (SC), via a hexapeptide motif in the choline-binding protein SpsA. The SpsA-pIgR interaction mediates adherence and internalization of the human pathogen into epithelial cells. In this study the results of SpsA binding to human, mouse, and chimeric SC strongly supported the human specificity of this unique interaction and suggested that binding sites in the third and fourth Ig-like domain of human SC (D3 and D4, respectively) are involved in SpsA-pIgR complex formation. Binding of SpsA to SC-derived synthetic peptides indicated surface-located potential binding motifs in D3 and D4. Adherence and uptake of pneumococci or SpsA-coated latex beads depended on the SpsA hexapeptide motif as well as SpsA-binding sites in D3 and D4 of human pIgR. The involvement of D3 and D4 in adherence and invasion was demonstrated by the lack of binding of SpsA-coated latex beads to transfected epithelial cells expressing mutated pIgR. Finally, blocking experiments with chimeric human-mouse SC as well as synthetic peptides indicated the participation of D3 and a key role of D4 in pneumococcal invasion.


Assuntos
Streptococcus pneumoniae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Proteínas de Bactérias/química , Sítios de Ligação , Linhagem Celular , Colina/química , DNA Complementar/metabolismo , Cães , Epitopos , Escherichia coli/metabolismo , Deleção de Genes , Humanos , Cinética , Camundongos , Microscopia de Fluorescência , Dados de Sequência Molecular , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Transfecção
12.
J Biol Chem ; 277(45): 42755-62, 2002 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-12213814

RESUMO

Mucosal surfaces are protected by polymeric immunoglobulins that are transported across the epithelium by the polymeric immunoglobulin receptor (pIgR). Only polymeric IgA and IgM containing a small polypeptide called the "joining" (J) chain can bind to the pIgR. J chain-positive IgA consists of dimers, and some larger polymers, whereas only IgM pentamers incorporate the J chain. We made domain swap chimeras between human IgA1 and IgM and found that the COOH-terminal domains of the heavy chains (Calpha3 and Cmu4, respectively) dictated the size of the polymers formed and also which polymers incorporated the J chain. We also showed that chimeric IgM molecules engineered to contain Calpha3 were able to bind the rabbit pIgR. Since the rabbit pIgR normally does not bind IgM, these results suggest that the COOH-terminal domain of the polymeric immunoglobulins is primarily responsible for interaction with the pIgR. Finally, we made a novel chimeric IgA immunoglobulin, containing the terminal domain from IgM. This recombinant molecule formed J chain-containing pentamers that could, like IgA, efficiently form covalent complexes with the human pIgR ectodomain, known as secretory component.


Assuntos
Imunoglobulina A/química , Isotipos de Imunoglobulinas/química , Imunoglobulina M/química , Receptores de Imunoglobulina Polimérica/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Dimerização , Cães , Humanos , Imunoglobulina A/imunologia , Isotipos de Imunoglobulinas/imunologia , Imunoglobulina M/imunologia , Rim , Substâncias Macromoleculares , Camundongos , Coelhos , Receptores de Imunoglobulina Polimérica/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA