Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175674

RESUMO

SET-M33 is a synthetic peptide that is being developed as a new antibiotic against major Gram-negative bacteria. Here we report two in vivo studies to assess the toxicity and efficacy of the peptide in a murine model of pulmonary inflammation. First, we present the toxicity study in which SET-M33 was administered to CD-1 mice by snout inhalation exposure for 1 h/day for 7 days at doses of 5 and 20 mg/kg/day. The results showed adverse clinical signs and effects on body weight at the higher dose, as well as some treatment-related histopathology findings (lungs and bronchi, nose/turbinates, larynx and tracheal bifurcation). On this basis, the no observable adverse effect level (NOAEL) was considered to be 5 mg/kg/day. We then report an efficacy study of the peptide in an endotoxin (LPS)-induced pulmonary inflammation model. Intratracheal administration of SET-M33 at 0.5, 2 and 5 mg/kg significantly inhibited BAL neutrophil cell counts after an LPS challenge. A significant reduction in pro-inflammatory cytokines, KC, MIP-1α, IP-10, MCP-1 and TNF-α was also recorded after SET-M33 administration.


Assuntos
Endotoxinas , Pneumonia , Camundongos , Animais , Endotoxinas/toxicidade , Peptídeos Antimicrobianos , Lipopolissacarídeos/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/tratamento farmacológico , Citocinas , Peptídeos , Inflamação/tratamento farmacológico , Líquido da Lavagem Broncoalveolar
2.
Sci Rep ; 12(1): 19294, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369523

RESUMO

The antimicrobial peptide SET-M33 is under study for the development of a new antibiotic against major Gram-negative pathogens. Here we report the toxicological evaluation of SET-M33 administered intravenously to rats and dogs. Dose range finding experiments determined the doses to use in toxicokinetic evaluation, clinical biochemistry analysis, necroscopy and in neurological and respiratory measurements. Clinical laboratory investigations in dogs and rats showed a dose-related increase in creatinine and urea levels, indicating that the kidneys are the target organ. This was also confirmed by necroscopy studies of animal tissues, where signs of degeneration and regeneration were found in kidney when SET-M33 was administered at the highest doses in the two animal species. Neurological toxicity measurements by the Irwin method and respiratory function evaluation in rats did not reveal any toxic effect even at the highest dose. Finally, repeated administration of SET-M33 by short infusion in dogs revealed a no-observed-adverse-effect-level of 0.5 mg/kg/day.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Ratos , Cães , Animais , Testes de Sensibilidade Microbiana , Antibacterianos/toxicidade , Anti-Infecciosos/toxicidade , Peptídeos , Relação Dose-Resposta a Droga
3.
Pharmaceutics ; 15(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36678633

RESUMO

Development of inhalable formulations for delivering peptides to the conductive airways and shielding their interactions with airway barriers, thus enhancing peptide/bacteria interactions, is an important part of peptide-based drug development for lung applications. Here, we report the construction of a biocompatible nanosystem where the antimicrobial peptide SET-M33 is encapsulated within polymeric nanoparticles of poly(lactide-co-glycolide) (PLGA) conjugated with polyethylene glycol (PEG). This system was conceived for better delivery of the peptide to the lungs by aerosol. The encapsulated peptide showed prolonged antibacterial activity, due to its controlled release, and much lower toxicity than the free molecule. The peptide-based nanosystem killed Pseudomonas aeruginosa in planktonic and sessile forms in a dose-dependent manner, remaining active up to 72 h after application. The encapsulated peptide showed no cytotoxicity when incubated with human bronchial epithelial cells from healthy individuals and from cystic fibrosis patients, unlike the free peptide, which showed an EC50 of about 22 µM. In vivo acute toxicity studies in experimental animals showed that the peptide nanosystem did not cause any appreciable side effects, and confirmed its ability to mitigate the toxic and lethal effects of free SET-M33.

4.
J Med Chem ; 63(24): 15997-16011, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33284606

RESUMO

Heparan sulfate proteoglycans take part in crucial events of cancer progression, such as epithelial-mesenchymal transition, cell migration, and cell invasion. Through sulfated groups on their glycosaminoglycan chains, heparan sulfate proteoglycans interact with growth factors, morphogens, chemokines, and extracellular matrix (ECM) proteins. The amount and position of sulfated groups are highly variable, thus allowing differentiated ligand binding and activity of heparan sulfate proteoglycans. This variability and the lack of specific ligands have delayed comprehension of the molecular basis of heparan sulfate proteoglycan functions. Exploiting a tumor-targeting peptide tool that specifically recognizes sulfated glycosaminoglycans, we analyzed the role of membrane heparan sulfate proteoglycans in the adhesion and migration of cancer cell lines. Starting from the observation that the sulfated glycosaminoglycan-specific peptide exerts a different effect on adhesion, migration, and invasiveness of different cancer cell lines, we identified and characterized three cell migration phenotypes, where different syndecans are associated with alternative signaling for directional cell migration.


Assuntos
Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glipicanas/metabolismo , Proteoglicanas de Heparan Sulfato/farmacologia , Neoplasias/patologia , Sindecanas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
5.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167372

RESUMO

The process of heparan sulfate proteoglycan (HSPG) internalization has been described as following different pathways. The tumor-specific branched NT4 peptide has been demonstrated to bind HSPGs on the plasma membrane and to be internalized in tumor cell lines. The polycationic peptide has been also shown to impair migration of different cancer cell lines in 2D and 3D models. Our hypothesis was that HSPG endocytosis could affect two important phenomena of cancer development: cell migration and nourishment. Using NT4 as an experimental tool mimicking heparin-binding ligands, we studied endocytosis and trafficking of HSPGs in a triple-negative human breast cancer cell line, MDA-MB-231. The peptide entered cells employing caveolin- or clathrin-dependent endocytosis and macropinocytosis, in line with what is already known about HSPGs. NT4 then localized in early and late endosomes in a time-dependent manner. The peptide had a negative effect on CDC42-activation triggered by EGF. The effect can be explained if we consider NT4 a competitive inhibitor of EGF on HS that impairs the co-receptor activity of the proteoglycan, reducing EGFR activation. Reduction of the invasive migratory phenotype of MDA-MB-231 induced by NT4 can be ascribed to this effect. RhoA activation was damped by EGF in MDA-MB-231. Indeed, EGF reduced RhoA-GTP and NT4 did not interfere with this receptor-mediated signaling. On the other hand, the peptide alone determined a small but solid reduction in active RhoA in breast cancer cells. This result supports the observation of few other studies, showing direct activation of the GTPase through HSPG, not mediated by EGF/EGFR.


Assuntos
Adenocarcinoma/metabolismo , Endocitose/fisiologia , Proteoglicanas de Heparan Sulfato/metabolismo , Imagem Molecular/métodos , Peptídeos/química , Neoplasias de Mama Triplo Negativas/metabolismo , Adenocarcinoma/patologia , Cátions , Movimento Celular , Feminino , Humanos , Microscopia de Fluorescência , Peptídeos/farmacocinética , Transporte Proteico , Neoplasias de Mama Triplo Negativas/patologia , Células Tumorais Cultivadas
6.
Amino Acids ; 52(6-7): 915-924, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32556741

RESUMO

The tumor-specific tetrabranched peptide NT4 binds membrane sulfate glycosaminoglycans and receptors belonging to the low density lipoprotein receptor-related protein (LRP) family, like LRP6, which are overexpressed in cancer. The binding occurs through a multimeric positively-charged motif of NT4 that interacts with negatively charged motives in both glycosaminoglycans and LRP receptors. LRP6 has an essential function in canonical Wnt signaling, acting together with receptors of the Frizzled family as coreceptor for Wnt ligands. The extracellular domain of LRP6 contains four YWTD ß-propellers, which are fundamental for interactions with ligands, such as Wnt and Wnt inhibitors. To investigate the molecular interactions between the NT4 peptide and LRP6 receptor, we synthesized a library of epitope mapping peptides reproducing the YWTD ß-propeller 3 and 4 of LRP6. The peptides that showed to bind NT4 represented the portion of LRP6 located on the top face of ß-propeller 3 and contained negatively charged residues, including glutamic acid-708 which is known to be involved in Wnt3a interaction. The results pave the way for a possible development of peptide inhibitors of Wnt3a pathway to be used as drugs in oncology.


Assuntos
Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Neurotensina/metabolismo , Humanos , Ligantes , Neurotensina/análogos & derivados , Neurotensina/síntese química , Ressonância de Plasmônio de Superfície/métodos , Via de Sinalização Wnt
7.
Molecules ; 25(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121130

RESUMO

The development of selective tumor targeting agents to deliver multiple units of chemotherapy drugs to cancer tissue would improve treatment efficacy and greatly advance progress in cancer therapy. Here we report a new drug delivery system based on a tetrabranched peptide known as NT4, which is a promising cancer theranostic by virtue of its high cancer selectivity. We developed NT4 directly conjugated with one, two, or three units of paclitaxel and an NT4-based nanosystem, using NIR-emitting quantum dots, loaded with the NT4 tumor-targeting agent and conjugated with paclitaxel, to obtain a NT4-QD-PTX nanodevice designed to simultaneously detect and kill tumor cells. The selective binding and in vitro cytotoxicity of NT4-QD-PTX were higher than for unlabeled QD-PTX when tested on the human colon adenocarcinoma cell line HT-29. NT4-QD-PTX tumor-targeted nanoparticles can be considered promising for early tumor detection and for the development of effective treatments combining simultaneous therapy and diagnosis.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Paclitaxel , Peptídeos , Pontos Quânticos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos , Paclitaxel/química , Paclitaxel/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Pontos Quânticos/química , Pontos Quânticos/uso terapêutico
8.
Int J Nanomedicine ; 15: 1117-1128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32110011

RESUMO

INTRODUCTION: Antibiotic-resistant bacteria kill 25,000 people every year in the EU. Patients subject to recurrent lung infections are the most vulnerable to severe or even lethal infections. For these patients, pulmonary delivery of antibiotics would be advantageous, since inhalation can achieve higher concentration in the lungs than iv administration and can provide a faster onset of action. This would allow for the delivery of higher doses and hence reduce the number of treatments required. We report here about a new nanosystem (M33-NS) obtained by capturing SET-M33 peptide on single-chain dextran nanoparticles. SET-M33 is a non-natural antimicrobial peptide synthesized in branched form. This form gives the peptide resistance to degradation in biological fluids. SET-M33 has previously shown efficacy in vitro against about one hundred of Gram-negative multidrug and extensively drug-resistant clinical isolates and was also active in preclinical infection models of pneumonia, sepsis and skin infections. METHODS: The new nanosystem was evaluated for its efficacy in bacteria cells and in a mouse model of pneumonia. Toxicity and genotoxicity were also tested in vitro. Biodistribution and pharmacokinetic studies in healthy rats were carried out using a radiolabeled derivative of the nanosystem. RESULTS: The M33-nanosystem, studied here, showed to be effective against Pseudomonas aeruginosa in time-kill kinetic experiments. Cytotoxicity towards different animal cell lines was acceptable. Lung residence time of the antimicrobial peptide, administered via aerosol in healthy rats, was markedly improved by capturing SET-M33 on dextran nanoparticles. M33-NS was also efficient in eradicating pulmonary infection in a BALB/c mouse model of pneumonia caused by P. aeruginosa. DISCUSSION: This study revealed that the encapsulation of the antimicrobial peptide in dextran nanoparticles markedly improved lung residence time of the peptide administered via aerosol. The result has to be considered among the aims of the development of a new therapeutic option for patients suffering recurrent infections, that will benefit from high local doses of persistent antimicrobials.


Assuntos
Antibacterianos/administração & dosagem , Nanopartículas/administração & dosagem , Peptídeos/administração & dosagem , Infecções por Pseudomonas/tratamento farmacológico , Administração por Inalação , Animais , Antibacterianos/farmacologia , Dextranos , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Nanopartículas/química , Peptídeos/síntese química , Peptídeos/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Terapia Respiratória , Distribuição Tecidual
9.
FASEB J ; 34(1): 192-207, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914681

RESUMO

The peptide sequence KKIRVRLSA was synthesized in a dimeric structure (SET-M33DIM) and evaluated as a candidate drug for infections due to multidrug-resistant (MDR) Gram-negative pathogens. SET-M33DIM showed significant antibacterial activity against MDR strains of Klebsiella pneumoniae, Acinetobacter baumannii, and Escherichia coli (Minimal Inhibitory Concentration [MICs], 1.5-11 µM), and less activity against Pseudomonas aeruginosa (MICs, 11-22 µM). It showed very low toxicity in vitro, ex vivo, and in vivo; in cytotoxicity tests, its EC50 was as much as 22 times better than that of SET-M33, a peptide with the same amino-acid sequence, but synthesized in tetra-branched form (638 vs 28 µM). In in vivo and ex vivo experiments, SET-M33DIM cleared P. aeruginosa infection, significantly reducing signs of sepsis in animals, and restoring cell viability in lung tissue after bacterial challenge. It also quelled inflammation triggered by LPS and live bacterial cells, inhibiting expression of inflammatory mediators in lung tissue, cultured macrophages, and bronchial cells from a cystic fibrosis patient.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Peptídeos/síntese química , Peptídeos/farmacologia , Pneumonia Bacteriana/tratamento farmacológico , Infecções por Pseudomonas/tratamento farmacológico , Animais , Antibacterianos/síntese química , Farmacorresistência Bacteriana Múltipla , Feminino , Hospedeiro Imunocomprometido , Lipopolissacarídeos , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Células RAW 264.7 , Testes de Toxicidade
10.
Front Oncol ; 9: 843, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620357

RESUMO

Membrane heparan sulfate proteoglycans (HSPG) regulate cell proliferation, migration, and differentiation and are therefore considered key players in cancer cell development processes. Here, we used the NT4 peptide to investigate how the sulfation pattern of HSPG on cells drives binding specificity. NT4 is a branched peptide that binds the glycosaminoglycan (GAG) chains of HSPG. It has already been shown to inhibit growth factor-induced migration and invasiveness of cancer cells, implying antagonist binding of HSPG. The binding affinity of NT4 with recombinant HSPG showed that NT4 bound glypican-3 and -4 and, with lower affinity, syndecan-4. NT4 binding to the cancer cell membrane was inversely correlated with sulfatase expression. NT4 binding was higher in cell lines with lower expression of SULF-1 and SULF-2, which confirms the determinant role of sulfate groups for recognition by NT4. Using 8-mer and 9-mer heparan sulfate (HS) oligosaccharides with analog disaccharide composition and different sulfation sites, a possible recognition motif was identified that includes repeated 6-O-sulfates alternating with N- and/or 2-O-sulfates. Molecular modeling provided a fully descriptive picture of binding architecture, showing that sulfate groups on opposite sides of the oligosaccharide can interact with positive residues on two peptide sequences of the branched structure, thus favoring multivalent binding and explaining the high affinity and selectivity of NT4 for highly sulfated GAGs. NT4 and possibly newly selected branched peptides will be essential probes for reconstructing and unraveling binding sites for cancer-involved ligands on GAGs and will pave the way for new cancer detection and treatment options.

11.
Oncol Rep ; 41(1): 312-324, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30365110

RESUMO

Notable advances in treatment have been made and increases in the cure rates of pediatric leukemia have been achieved. However, the majority of children with relapsed disease are not expected to survive, with chemotherapy resistance acting as the principal cause of treatment failure. Interaction between leukemic cells and the bone marrow microenvironment is the primary cause of relapse. It was identified that a multi­protein membrane complex, formed by potassium voltage­gated channel subfamily H member 2 (hERG1) channels, the ß1 integrin subunit and the stromal cell­derived factor 12 (CXCL12) receptor, C­X­C chemokine receptor type 4 (CXCR4), exerts a role in mesenchymal stromal cell (MSC)­mediated chemoresistance in pediatric leukemias. hERG1 blockade was able to overcome chemoresistance in vitro and in vivo. As an alternative strategy to overcome chemoresistance, the present study evaluated the effects of novel tools targeting the CXCR4/CXCL12 axis. The analysis of CXCL12 structural dynamics was used for the selection of a peptide (4­1­17) and a small molecule (8673), which interact with a transient hot spot, identified by a dynamic drug design approach. The present findings indicated that peptide 4­1­17 and small molecule 8673 inhibited leukemia cell proliferation and induced a pro­apoptotic effect, which was not reduced by the presence of MSCs. The combined treatment with 4­1­17 and 8673 had a stronger pro­apoptotic effect, particularly on cells cultured on MSCs in normoxic and hypoxic conditions, and was able to overcome MSC­induced resistance to cytarabine. Overall, the targeting of CXCL12 and the ensuing inhibition of the CXCR4/CXCL12 axis may be proposed as an alternative strategy to overcome chemoresistance in leukemia.


Assuntos
Quimiocina CXCL12/metabolismo , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia/metabolismo , Peptídeos/farmacologia , Receptores CXCR4/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Medula Óssea/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL12/química , Humanos , Leucemia/tratamento farmacológico , Simulação de Dinâmica Molecular , Peptídeos/síntese química , Peptídeos/química , Ligação Proteica/efeitos dos fármacos , Receptores CXCR4/química , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
12.
J Nanobiotechnology ; 16(1): 21, 2018 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-29501065

RESUMO

BACKGROUND: Near-infrared quantum dots (NIR QDs) are a new class of fluorescent labels with excellent bioimaging features, such as high fluorescence intensity, good fluorescence stability, sufficient electron density, and strong tissue-penetrating ability. For all such features, NIR QDs have great potential for early cancer diagnosis, in vivo tumor imaging and high resolution electron microscopy studies on cancer cells. RESULTS: In the present study we constructed NIR QDs functionalized with the NT4 cancer-selective tetrabranched peptides (NT4-QDs). We observed specific uptake of NT4-QDs in human cancer cells in in vitro experiments and a much higher selective accumulation and retention of targeted QDs at the tumor site, compared to not targeted QDs, in a colon cancer mouse model. CONCLUSIONS: NIR QDs labelled with the tetrabranched NT4 peptide have very promising performance for selective addressing of tumor cells in vitro and in vivo, proving rising features of NT4-QDs as theranostics.


Assuntos
Corantes Fluorescentes/química , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Peptídeos/química , Pontos Quânticos/química , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Corantes Fluorescentes/metabolismo , Humanos , Raios Infravermelhos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Peptídeos/metabolismo , Pontos Quânticos/metabolismo , Pontos Quânticos/ultraestrutura
13.
PLoS One ; 13(3): e0194744, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566097

RESUMO

Heparan sulfate proteoglycans, HSPGs, modulate major transformations of cancer cells, leading to tumor growth, invasion and metastasis. HSPGs also regulate neo-angiogenesis which prompts cancer progression and metastatic spread. A different aspect of heparin and analogs is their prominent role in the coagulation of blood. The interplay between coagulation and metastasis is being actively studied: anticoagulants such as heparin-derivatives have anticancer activity and procoagulants, such as thrombin, positively modulate proliferation, migration and invasion. The branched peptide NT4 binds to HSPGs and targets selectively cancer cells and tissues. For this, it had been extensively investigated in the last years and it proved to be efficient as chemotherapeutic and tumor tracer in in vivo models of cancer. We investigated the effects of the branched peptide in terms of modulation of angiogenesis and invasiveness of cancer cells. NT4 proved to have a major impact on endothelial cell proliferation, migration and tube formation, particularly when induced by FGF2 and thrombin. In addition, NT4 had important effects on aggressive tumor cells migration and invasion and it also had an anticoagulant profile.The peptide showed very interesting evidence of interference with tumor invasion pathways, offering a cue for its development as a tumor-targeting drug, and also for its use in the study of links between coagulation and tumor progression involving HSPGs.


Assuntos
Anticoagulantes/farmacologia , Proliferação de Células/efeitos dos fármacos , Proteoglicanas de Heparan Sulfato/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/prevenção & controle , Peptídeos/farmacologia , Anticoagulantes/química , Anticoagulantes/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Células Cultivadas , Progressão da Doença , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Células MCF-7 , Invasividade Neoplásica , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Peptídeos/química , Peptídeos/uso terapêutico
14.
Oncotarget ; 8(44): 76141-76152, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29100299

RESUMO

Cancer-selective tetra-branched peptides, named NT4, can be coupled to different functional units for cancer cell imaging or therapy. NT4 peptides specifically bind to lipoprotein receptor-related proteins (LRP) receptors and to heparan sulfate chains on membrane proteoglycans and can be efficiently internalized by cancer cells expressing these membrane targets. Since binding and internalization of NT4 peptides is mediated by specific NT4 receptors on cancer cell membranes and this may allow drug resistance produced by drug membrane transporters to be by-passed, we tested the ability of drug-armed NT4 to by-pass drug resistance in cancer cell lines. We found that MTX-conjugated NT4 allows drug resistance to be by-passed in MTX-resistant human breast cancer cells lacking expression of folate reduced carrier. NT4 peptides appear to be extremely promising cancer-selective targeting agents that can be exploited as theranostics in personalized oncological applications.

15.
Curr Top Med Chem ; 17(5): 613-619, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27411321

RESUMO

The increasing frequency of multi-resistant Gram-positive and Gram-negative bacteria and a long-term decreasing trend in the development of new antimicrobial molecules prompts research for new anti-infective agents with new modes of action. Antimicrobial peptides (AMPs) are considered an interesting class of antibacterial molecules. Many new AMPs have been discovered and some are being evaluated for the development of new antibacterial therapeutics. Since the development of new antibacterial drugs has been neglected for decades, we are now faced with extreme medical need combined with a lack of technical experimental progress in setting up efficient models of antibacterial activity in animals. Here we review experiments with AMPs in animal models of sepsis, pneumonia and skin infection caused by bacteria. Animal models of infection have been of enormous predictive value in antibacterial drug discovery, both for elucidating AMP efficacy in the treatment of experimentally induced infection and for comparing the effectiveness of two or more antibiotics.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Desenho de Fármacos , Humanos , Camundongos
16.
J Biol Chem ; 291(49): 25742-25748, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27758868

RESUMO

The synthetic antimicrobial peptide SET-M33 has strong activity against bacterial infections caused by Gram-negative bacteria. It is currently in preclinical development as a new drug to treat lung infections caused by Gram-negative bacteria. Here we report its strong anti-inflammatory activity in terms of reduced expression of a number of cytokines, enzymes, and signal transduction factors involved in inflammation triggered by LPS from Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli Sixteen cytokines and other major agents involved in inflammation were analyzed in macrophages and bronchial cells after stimulation with LPS and incubation with SET-M33. The bronchial cells were obtained from a cystic fibrosis patient. A number of these proteins showed up to 100% reduction in expression as measured by RT-PCR, Western blotting, or Luminex technology. LPS neutralization was also demonstrated in vivo by challenging bronchoalveolar lavage of SET-M33-treated mice with LPS, which led to a sharp reduction in TNF-α with respect to non-SET-M33-treated animals. We also describe a strong activity of SET-M33 in stimulating cell migration of keratinocytes in wound healing experiments in vitro, demonstrating a powerful immunomodulatory action generally characteristic of molecules taking part in innate immunity.


Assuntos
Anti-Inflamatórios/farmacologia , Brônquios/metabolismo , Fibrose Cística/metabolismo , Fatores Imunológicos/farmacologia , Lipopolissacarídeos/toxicidade , Animais , Fibrose Cística/genética , Fibrose Cística/patologia , Citocinas/metabolismo , Humanos , Camundongos , Células RAW 264.7
17.
Sci Rep ; 6: 27174, 2016 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-27255651

RESUMO

The tetra-branched peptide NT4 selectively binds to different human cancer cells and tissues. NT4 specifically binds to sulfated glycosaminoglycans on cancer cell membranes. Since sulfated glycosaminoglycans are involved in cancer cell interaction with the extracellular matrix, we evaluated the effect of NT4 on cancer cell adhesion and migration. We demonstrated here that the branched peptide NT4 binds sulfated glycosaminoglycans with high affinity and with preferential binding to heparan sulfate. NT4 inhibits cancer cell adhesion and migration on different proteins, without modifying cancer cell morphology or their ability to produce protrusions, but dramatically affecting the directionality and polarity of cell movement. Results obtained by taking advantage of the selective targeting of glycosaminoglycans chains by NT4, provide insights into the role of heparan sulfate proteoglycans in cancer cell adhesion and migration and suggest a determinant role of sulfated glycosaminoglycans in the control of cancer cell directional migration.


Assuntos
Glicosaminoglicanos/metabolismo , Peptídeos/farmacologia , Sulfatos/química , Animais , Células CHO , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cricetulus , Glicosaminoglicanos/química , Heparitina Sulfato/metabolismo , Humanos , Ligação Proteica
18.
Sci Rep ; 5: 17736, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26626158

RESUMO

Taxanes are highly effective chemotherapeutic drugs against proliferating cancer and an established option in the standard treatment of ovarian and breast cancer. However, treatment with paclitaxel is associated with severe side effects, including sensory axonal neuropathy, and its poor solubility in water complicates its formulation. In this paper we report the in vitro and in vivo activity of a new form of paclitaxel, modified for conjugation with a tumor-selective tetrabranched peptide carrier (NT4). NT4 selectively targets tumor cells by binding to membrane sulfated glycosaminoglycans (GAG) and to endocytic receptors, like LRP1 and LRP6, which are established tumor markers. Biological activity of NT4-paclitaxel was tested in vitro on MDA-MB 231 and SKOV-3 cell lines, representing breast and ovarian cancer, respectively, and in vivo in an orthotopic mouse model of human breast cancer. Using in vivo bioluminescence imaging, we found that conjugation of paclitaxel with the NT4 peptide led to increased therapeutic activity of the drug in vivo. NT4-paclitaxel induced tumor regression, whereas treatment with unconjugated paclitaxel only produced a reduction in tumor growth. Moreover, unlike paclitaxel, NT4-paclitaxel is very hydrophilic, which may improve its pharmacokinetic profile and allow the use of less toxic dilution buffers, further decreasing its general chemotherapic toxicity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/farmacologia , Peptídeos/farmacologia , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Portadores de Fármacos/química , Feminino , Humanos , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paclitaxel/química , Peptídeos/química , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Biomed Res Int ; 2015: 173507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984525

RESUMO

Despite recent advances in multimodal therapy, bladder cancer still ranks ninth in worldwide cancer incidence. New molecules which might improve early diagnosis and therapeutic efficiency for tumors of such high epidemiological impact therefore have very high priority. In the present study, the tetrabranched neurotensin peptide NT4 was conjugated with functional units for cancer-cell imaging or therapy and was tested on bladder cancer cell lines and specimens from bladder cancer surgical resections, in order to evaluate its potential for targeted personalized therapy of bladder cancer. Fluorophore-conjugated NT4 distinguished healthy and cancer tissues with good statistical significance (P < 0.05). NT4 conjugated to methotrexate or gemcitabine was cytotoxic for human bladder cancer cell lines at micromolar concentrations. Their selectivity for bladder cancer tissue and capacity to carry tracers or drugs make NT4 peptides candidate tumor targeting agents for tracing cancer cells and for personalized therapy of human bladder cancer.


Assuntos
Neurotensina/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Biópsia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Endocitose/efeitos dos fármacos , Feminino , Fluorescência , Humanos , Masculino , Metotrexato/farmacologia , Pessoa de Meia-Idade , Neurotensina/farmacologia , Ligação Proteica/efeitos dos fármacos , Neoplasias da Bexiga Urinária/patologia , Gencitabina
20.
Molecules ; 19(6): 7255-68, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896264

RESUMO

We report the identification of a new human tumor necrosis factor-alpha (TNF-α) specific peptide selected by competitive panning of a phage library. Competitive elution of phages was obtained using the monoclonal antibody adalimumab, which neutralizes pro-inflammatory processes caused by over-production of TNF-α in vivo, and is used to treat severe symptoms of rheumatoid arthritis. The selected peptide was synthesized in monomeric and branched form and analyzed for binding to TNF-α and competition with adalimumab and TNF-α receptors. Results of competition with TNF-α receptors in surface plasmon resonance and melanoma cells expressing both TNF receptors make the peptide a candidate compound for the development of a novel anti-TNF-α drug.


Assuntos
Biblioteca de Peptídeos , Peptídeos/farmacologia , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Ligação Proteica/efeitos dos fármacos , Técnicas de Síntese em Fase Sólida , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA