Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 106(4): 878-886, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31805366

RESUMO

PURPOSE: Diabetes mellitus is a delayed effect of radiation exposure in human and nonhuman primates. Diabetes mellitus is characterized by peripheral tissue insulin resistance, and as a result, irradiation exposure may cause important changes in insulin-sensitive tissues such as muscle and adipose. METHODS AND MATERIALS: We prospectively investigated changes in response to irradiation (4 Gy whole body exposure) in 16 male rhesus macaques. We evaluated changes in body composition and glycemic control for 2 years. Insulin responsiveness, lipolysis, inflammation, and fibrosis were evaluated at study end. RESULTS: Irradiated animals accumulate less fat and significantly increased percent glycation of hemoglobin A1c over time, such that 40% of irradiated monkeys had values that define them as diabetic at 2 years. Subcutaneous (SQ) adipose tissue was insulin resistant, as evidenced by reduced phosphorylation of the insulin receptor substrate-1 in response to insulin challenge and had increased basal lipolysis despite comparable insulin exposures to control animals. Irradiated SQ adipose tissue had more macrophage infiltration and adipocytes were larger. The observed hypertrophy was associated with decreased glycemic control and macrophage infiltration correlated with decreased adiponectin, signifying that inflammation is associated with worsening health. No evidence of SQ adipose fibrosis was detected. CONCLUSIONS: Our study is the first to prospectively illustrate that sublethal irradiation exposures directly propagate metabolic disease in the absence of obesity in nonhuman primates and implicate SQ adipose dysfunction as a target tissue.


Assuntos
Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos da radiação , Resistência à Insulina/efeitos da radiação , Irradiação Corporal Total/efeitos adversos , Tecido Adiposo/patologia , Animais , Glicemia/metabolismo , Composição Corporal/efeitos da radiação , Relação Dose-Resposta à Radiação , Fibrose , Lipólise/efeitos da radiação , Macaca mulatta , Masculino , Exposição à Radiação/efeitos adversos
2.
PLoS One ; 13(12): e0208634, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533032

RESUMO

The NAD+-dependent deacetylase SIRT2 is unique amongst sirtuins as it is effective in the cytosol, as well as the mitochondria. Defining the role of cytosolic acetylation state in specific tissues is difficult since even physiological effects at the whole body level are unknown. We hypothesized that genetic SIRT2 knockout (KO) would lead to impaired insulin action, and that this impairment would be worsened in HF fed mice. Insulin sensitivity was tested using the hyperinsulinemic-euglycemic clamp in SIRT2 KO mice and WT littermates. SIRT2 KO mice exhibited reduced skeletal muscle insulin-induced glucose uptake compared to lean WT mice, and this impairment was exacerbated in HF SIRT2 KO mice. Liver insulin sensitivity was unaffected in lean SIRT2 KO mice. However, the insulin resistance that accompanies HF-feeding was worsened in SIRT2 KO mice. It was notable that the effects of SIRT2 KO were largely disassociated from cytosolic acetylation state, but were closely linked to acetylation state in the mitochondria. SIRT2 KO led to an increase in body weight that was due to increased food intake in HF fed mice. In summary, SIRT2 deletion in vivo reduces muscle insulin sensitivity and contributes to liver insulin resistance by a mechanism that is unrelated to cytosolic acetylation state. Mitochondrial acetylation state and changes in feeding behavior that result in increased body weight correspond to the deleterious effects of SIRT2 KO on insulin action.


Assuntos
Dieta Hiperlipídica , Resistência à Insulina , Sirtuína 2/genética , Acetilação/efeitos dos fármacos , Animais , Metabolismo Energético , Insulina/sangue , Insulina/farmacologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuína 2/deficiência
3.
J Biol Chem ; 293(30): 11944-11954, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29891549

RESUMO

Glycine N-methyltransferase (GNMT) is the most abundant liver methyltransferase regulating the availability of the biological methyl donor, S-adenosylmethionine (SAM). Moreover, GNMT has been identified to be down-regulated in hepatocellular carcinoma (HCC). Despite its role in regulating SAM levels and association of its down-regulation with liver tumorigenesis, the impact of reduced GNMT on metabolic reprogramming before the manifestation of HCC has not been investigated in detail. Herein, we used 2H/13C metabolic flux analysis in conscious, unrestrained mice to test the hypothesis that the absence of GNMT causes metabolic reprogramming. GNMT-null (KO) mice displayed a reduction in blood glucose that was associated with a decline in both hepatic glycogenolysis and gluconeogenesis. The reduced gluconeogenesis was due to a decrease in liver gluconeogenic precursors, citric acid cycle fluxes, and anaplerosis and cataplerosis. A concurrent elevation in both hepatic SAM and metabolites of SAM utilization pathways was observed in the KO mice. Specifically, the increase in metabolites of SAM utilization pathways indicated that hepatic polyamine synthesis and catabolism, transsulfuration, and de novo lipogenesis pathways were increased in the KO mice. Of note, these pathways utilize substrates that could otherwise be used for gluconeogenesis. Also, this metabolic reprogramming occurs before the well-documented appearance of HCC in GNMT-null mice. Together, these results indicate that GNMT deletion promotes a metabolic shift whereby nutrients are channeled away from glucose formation toward pathways that utilize the elevated SAM.


Assuntos
Carbono/metabolismo , Deleção de Genes , Gluconeogênese , Glicina N-Metiltransferase/genética , Metionina/metabolismo , Animais , Ciclo do Ácido Cítrico , Metabolismo Energético , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Masculino , Análise do Fluxo Metabólico , Camundongos , Camundongos Knockout , S-Adenosilmetionina/metabolismo
4.
Am J Physiol Cell Physiol ; 306(1): C19-27, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24196528

RESUMO

A constant provision of ATP is of necessity for cardiac contraction. As the heart progresses toward failure following a myocardial infarction (MI), it undergoes metabolic alterations that have the potential to compromise the ability to meet energetic demands. This study evaluated the efficacy of mesenchymal stem cell (MSC) transplantation into the infarcted heart to minimize impairments in the metabolic processes that contribute to energy provision. Seven and twenty-eight days following the MI and MSC transplantation, MSC administration minimized cardiac systolic dysfunction. Hyperinsulinemic-euglycemic clamps, coupled with 2-[(14)C]deoxyglucose administration, were employed to assess systemic insulin sensitivity and tissue-specific, insulin-mediated glucose uptake 36 days following the MI in the conscious, unrestrained, C57BL/6 mouse. The improved systolic performance in MSC-treated mice was associated with a preservation of in vivo insulin-stimulated cardiac glucose uptake. Conserved glucose uptake in the heart was linked to the ability of the MSC treatment to diminish the decline in insulin signaling as assessed by Akt phosphorylation. The MSC treatment also sustained mitochondrial content, ADP-stimulated oxygen flux, and mitochondrial oxidative phosphorylation efficiency in the heart. Maintenance of mitochondrial function and density was accompanied by preserved peroxisome proliferator-activated receptor-γ coactivator-1α, a master regulator of mitochondrial biogenesis. These studies provide insight into mechanisms of action that lead to an enhanced energetic state in the infarcted heart following MSC transplantation that may assist in energy provision and dampen cardiac dysfunction.


Assuntos
Difosfato de Adenosina/farmacologia , Glucose/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/cirurgia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia
5.
Diabetologia ; 57(3): 603-13, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24305966

RESUMO

AIMS/HYPOTHESIS: Increased extracellular matrix (ECM) collagen is a characteristic of muscle insulin resistance. Matrix metalloproteinase (MMP) 9 is a primary enzyme that degrades collagen IV (ColIV). As a component of the basement membrane, ColIV plays a key role in ECM remodelling. We tested the hypotheses that genetic deletion of MMP9 in mice increases muscle ColIV, induces insulin resistance in lean mice and worsens diet-induced muscle insulin resistance. METHODS: Wild-type (Mmp9(+/+)) and Mmp9-null (Mmp9(-/-)) mice were chow or high-fat (HF) fed for 16 weeks. Insulin action was measured by the hyperinsulinaemic-euglycaemic clamp in conscious weight-matched surgically catheterised mice. RESULTS: Mmp9(-/-) and HF feeding independently increased muscle ColIV. ColIV in HF-fed Mmp9(-/-) mice was further increased. Mmp9(-/-) did not affect fasting insulin or glucose in chow- or HF-fed mice. The glucose infusion rate (GIR), endogenous glucose appearance (EndoRa) and glucose disappearance (Rd) rates, and a muscle glucose metabolic index (Rg), were the same in chow-fed Mmp9(+/+) and Mmp9(-/-) mice. In contrast, HF-fed Mmp9(-/-) mice had decreased GIR, insulin-stimulated increase in Rd and muscle Rg. Insulin-stimulated suppression of EndoRa, however, remained the same in HF-fed Mmp9(-/-) and Mmp9(+/+) mice. Decreased muscle Rg in HF-fed Mmp9(-/-) was associated with decreased muscle capillaries. CONCLUSIONS/INTERPRETATION: Despite increased muscle ColIV, genetic deletion of MMP9 does not induce insulin resistance in lean mice. In contrast, this deletion results in a more profound state of insulin resistance, specifically in the skeletal muscle of HF-fed mice. These results highlight the importance of ECM remodelling in determining muscle insulin resistance in the presence of HF diet.


Assuntos
Colágeno Tipo V/metabolismo , Matriz Extracelular/metabolismo , Resistência à Insulina , Insulina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Músculo Esquelético/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica , Deleção de Genes , Técnica Clamp de Glucose , Imuno-Histoquímica , Secreção de Insulina , Metaloproteinase 9 da Matriz/genética , Camundongos , Músculo Esquelético/imunologia , Fator A de Crescimento do Endotélio Vascular/genética
6.
Cardiovasc Diabetol ; 12: 128, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24007410

RESUMO

BACKGROUND: This study aimed to evaluate the efficacy of mesenchymal stem cell (MSC) transplantation to mitigate abnormalities in cardiac-specific and systemic metabolism mediated by a combination of a myocardial infarction and diet-induced insulin resistance. METHODS: C57BL/6 mice were high-fat fed for eight weeks prior to induction of a myocardial infarction via chronic ligation of the left anterior descending coronary artery. MSCs were administered directly after myocardial infarction induction through a single intramyocardial injection. Echocardiography was performed prior to the myocardial infarction as well as seven and 28 days post-myocardial infarction. Hyperinsulinemic-euglycemic clamps coupled with 2-[14C]deoxyglucose were employed 36 days post-myocardial infarction (13 weeks of high-fat feeding) to assess systemic insulin sensitivity and insulin-mediated, tissue-specific glucose uptake in the conscious, unrestrained mouse. High-resolution respirometry was utilized to evaluate cardiac mitochondrial function in saponin-permeabilized cardiac fibers. RESULTS: MSC administration minimized the decline in ejection fraction following the myocardial infarction. The greater systolic function in MSC-treated mice was associated with increased in vivo cardiac glucose uptake and enhanced mitochondrial oxidative phosphorylation efficiency. MSC therapy promoted reductions in fasting arterial glucose and fatty acid concentrations. Additionally, glucose uptake in peripheral tissues including skeletal muscle and adipose tissue was elevated in MSC-treated mice. Enhanced glucose uptake in these tissues was associated with improved insulin signalling as assessed by Akt phosphorylation and prevention of a decline in GLUT4 often associated with high-fat feeding. CONCLUSIONS: These studies provide insight into the utility of MSC transplantation as a metabolic therapy that extends beyond the heart exerting beneficial systemic effects on insulin action.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Transplante de Células-Tronco Mesenquimais , Infarto do Miocárdio/cirurgia , Miocárdio/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Ácidos Graxos/sangue , Transportador de Glucose Tipo 4/metabolismo , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Músculo Esquelético/metabolismo , Infarto do Miocárdio/sangue , Infarto do Miocárdio/fisiopatologia , Fosforilação Oxidativa , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recuperação de Função Fisiológica , Volume Sistólico , Sístole , Fatores de Tempo
7.
Diabetes ; 62(2): 572-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23002035

RESUMO

Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF(-/-)) and wild-type littermates (mVEGF(+/+)) on a C57BL/6 background. The mVEGF(-/-) mice had an ~60% and ~50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF(-/-) mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF(-/-) mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle.


Assuntos
Capilares/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/irrigação sanguínea , Fator A de Crescimento do Endotélio Vascular/fisiologia , Animais , Glicemia/metabolismo , Deleção de Genes , Hipoglicemiantes/farmacologia , Insulina/sangue , Insulina/farmacologia , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/genética
8.
Proc Natl Acad Sci U S A ; 109(19): E1143-52, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22493234

RESUMO

Obesity triggers a low-grade systemic inflammation, which plays an important role in the development of obesity-associated metabolic diseases. In searching for links between lipid accumulation and chronic inflammation, we examined invariant natural killer T (iNKT) cells, a subset of T lymphocytes that react with lipids and regulate inflammatory responses. We show that iNKT cells respond to dietary lipid excess and become activated before or at the time of tissue recruitment of inflammatory leukocytes, and that these cells progressively increase proinflammatory cytokine production in obese mice. Such iNKT cells skew other leukocytes toward proinflammatory cytokine production and induce an imbalanced proinflammatory cytokine environment in multiple tissues. Further, iNKT cell deficiency ameliorates tissue inflammation and provides protection against obesity-induced insulin resistance and hepatic steatosis. Conversely, chronic iNKT cell stimulation using a canonical iNKT cell agonist exacerbates tissue inflammation and obesity-associated metabolic disease. These findings place iNKT cells into the complex network linking lipid excess to inflammation in obesity and suggest new therapeutic avenues for obesity-associated metabolic disorders.


Assuntos
Fígado Gorduroso/imunologia , Galactosilceramidas/fisiologia , Inflamação/imunologia , Resistência à Insulina/imunologia , Células T Matadoras Naturais/imunologia , Obesidade/imunologia , Tecido Adiposo Branco/imunologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Antígenos CD1d/genética , Antígenos CD1d/imunologia , Antígenos CD1d/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/imunologia , Fígado Gorduroso/genética , Feminino , Citometria de Fluxo , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Inflamação/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Resistência à Insulina/genética , Lipídeos/administração & dosagem , Lipídeos/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Obesidade/genética
9.
Diabetes ; 57(2): 288-97, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17977951

RESUMO

OBJECTIVE: The incretins glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide have been postulated to play a role in regulating insulin action, although the mechanisms behind this relationship remain obscure. We used the hyperinsulinemic-euglycemic clamp to determine sites where insulin action may be modulated in double incretin receptor knockout (DIRKO) mice, which lack endogenous incretin action. RESEARCH DESIGN AND METHODS: DIRKO and wild-type mice were fed regular chow or high-fat diet for 4 months. Clamps were performed on 5-h-fasted, conscious, unrestrained mice using an arterial catheter for sampling. RESULTS: Compared with wild-type mice, chow and high fat-fed DIRKO mice exhibited decreased fat and muscle mass associated with increased energy expenditure and ambulatory activity. Clamp rates of glucose infusion (GIR), endogenous glucose production (endoR(a)), and disappearance (R(d)) were not different in chow-fed wild-type and DIRKO mice, although insulin levels were lower in DIRKO mice. Liver Akt expression was decreased but Akt activation was increased in chow-fed DIRKO compared with wild-type mice. High-fat feeding resulted in fasting hyperinsulinemia and hyperglycemia in wild-type but not in DIRKO mice. GIR, suppression of endoR(a), and stimulation of R(d) were inhibited in high fat-fed wild-type mice but not in DIRKO mice. High-fat feeding resulted in impaired tissue glucose uptake (R(g)) in skeletal muscle of wild-type mice but not of DIRKO mice. Liver and muscle Akt activation was enhanced in high fat-fed DIRKO compared with wild-type mice. CONCLUSIONS: In summary, DIRKO mice exhibit enhanced insulin action compared with wild-type mice when fed a regular chow diet and are protected from high-fat diet-induced obesity and insulin resistance.


Assuntos
Insulina/farmacologia , Receptores de Superfície Celular/deficiência , Receptores de Superfície Celular/genética , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores dos Hormônios Gastrointestinais/genética , Receptores de Glucagon/deficiência , Receptores de Glucagon/genética , Tecido Adiposo/anatomia & histologia , Animais , Cruzamentos Genéticos , Gorduras na Dieta , Metabolismo Energético , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1 , Técnica Clamp de Glucose , Hiperinsulinismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/anatomia & histologia
10.
Am J Physiol Endocrinol Metab ; 286(1): E77-84, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-13129858

RESUMO

Muscle glucose uptake (MGU) is determined by glucose delivery, transport, and phosphorylation. C57Bl/6J mice overexpressing GLUT4, hexokinase II (HK II), or both were used to determine the barriers to MGU. A carotid artery and jugular vein were catheterized for arterial blood sampling and venous infusions. Experiments were conducted in conscious mice approximately 7 days after surgery. 2-Deoxy-[3H]glucose was administered during rest or treadmill exercise to calculate glucose concentration-dependent (Rg) and -independent (Kg) indexes of MGU. Compared with wild-type controls, GLUT4-overexpressing mice had lowered fasting glycemia (165 +/- 6 vs. 115 +/- 6 mg/dl) and increased Rg by 230 and 166% in the gastrocnemius and superficial vastus lateralis (SVL) muscles under sedentary conditions. GLUT4 overexpression was not able to augment exercise-stimulated Rg or Kg. Whereas HK II overexpression had no effect on fasting glycemia (170 +/- 6 mg/dl) or sedentary Rg, it increased exercise-stimulated Rg by 82, 60, and 169% in soleus, gastrocnemius, and SVL muscles, respectively. Combined GLUT4 and HK II overexpression lowered fasting glycemia (106 +/- 6 mg/dl), increased nonesterified fatty acids, and increased sedentary Rg. Combined GLUT4 and HK II overexpression did not enhance exercise-stimulated Rg compared with HK II-overexpressing mice because of the reduced glucose concentration. GLUT4 combined with HK II overexpression resulted in a marked increase in exercise-stimulated Kg. In conclusion, control of MGU shifts from membrane transport at rest to phosphorylation during exercise. Glucose transport is not normally a significant barrier during exercise. However, when the phosphorylation barrier is lowered by HK II overexpression, glucose transport becomes a key site of control for regulating MGU during exercise.


Assuntos
Glucose/farmacocinética , Hexoquinase/metabolismo , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Musculares , Músculo Esquelético/metabolismo , Animais , Estado de Consciência , Feminino , Transportador de Glucose Tipo 4 , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Camundongos Transgênicos , Fosforilação , Condicionamento Físico Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA