Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 131(22)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34591792

RESUMO

Epoxyeicosatrienoic acids (EETs) have potent antiinflammatory properties. Hydrolysis of EETs by soluble epoxide hydrolase/ epoxide hydrolase 2 (sEH/EPHX2) to less active diols attenuates their antiinflammatory effects. Macrophage activation is critical to many inflammatory responses; however, the role of EETs and sEH in regulating macrophage function remains unknown. Lung bacterial clearance of Streptococcus pneumoniae was impaired in Ephx2-deficient (Ephx2-/-) mice and in mice treated with an sEH inhibitor. The EET receptor antagonist EEZE restored lung clearance of S. pneumoniae in Ephx2-/- mice. Ephx2-/- mice had normal lung Il1b, Il6, and Tnfa expression levels and macrophage recruitment to the lungs during S. pneumoniae infection; however, Ephx2 disruption attenuated proinflammatory cytokine induction, Tlr2 and Pgylrp1 receptor upregulation, and Ras-related C3 botulinum toxin substrates 1 and 2 (Rac1/2) and cell division control protein 42 homolog (Cdc42) activation in PGN-stimulated macrophages. Consistent with these observations, Ephx2-/- macrophages displayed reduced phagocytosis of S. pneumoniae in vivo and in vitro. Heterologous overexpression of TLR2 and peptidoglycan recognition protein 1 (PGLYRP1) in Ephx2-/- macrophages restored macrophage activation and phagocytosis. Human macrophage function was similarly regulated by EETs. Together, these results demonstrate that EETs reduced macrophage activation and phagocytosis of S. pneumoniae through the downregulation of TLR2 and PGLYRP1 expression. Defining the role of EETs and sEH in macrophage function may lead to the development of new therapeutic approaches for bacterial diseases.


Assuntos
Eicosanoides/fisiologia , Epóxido Hidrolases/fisiologia , Pulmão/imunologia , Macrófagos/imunologia , Fagocitose/fisiologia , Streptococcus pneumoniae/imunologia , Animais , Proteínas de Transporte/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Moléculas com Motivos Associados a Patógenos/farmacologia , Receptor 2 Toll-Like/fisiologia
2.
J Allergy Clin Immunol Pract ; 7(5): 1580-1588, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30580047

RESUMO

BACKGROUND: Nasal polyps influence the burden of aspirin-exacerbated respiratory disease (AERD) by contributing to eicosanoid production. AERD is diagnosed through graded aspirin challenges. It is not known how sinus surgery affects aspirin challenge outcomes. OBJECTIVE: To investigate the effects of endoscopic sinus surgery (ESS) on aspirin-induced reaction severity and on the levels of eicosanoids associated with these reactions. METHODS: Twenty-eight patients with AERD were challenged with aspirin before and 3 to 4 weeks after ESS. Respiratory parameters and plasma and urine levels of eicosanoids were compared before and after challenges. RESULTS: Before ESS, AERD diagnosis was confirmed in all study patients by aspirin challenges that resulted in hypersensitivity reactions. After ESS, reactions to aspirin were less severe in all patients and 12 of 28 patients (43%, P < .001) had no detectable reaction. A lack of clinical reaction to aspirin was associated with lower peripheral blood eosinophilia (0.1 K/µL [interquartile range (IQR) 0.1-0.3] vs 0.4 K/µL [IQR 0.2-0.8]; P = .006), lower urinary leukotriene E4 levels after aspirin challenge (98 pg/mg creatinine [IQR 61-239] vs 459 pg/mg creatinine [IQR 141-1344]; P = .02), and lower plasma prostaglandin D2 to prostaglandin E2 ratio (0 [±0] vs 0.43 [±0.2]; P = .03), compared with those who reacted. CONCLUSIONS: Sinus surgery results in decreased aspirin sensitivity and a decrease in several plasma and urine eicosanoid levels in patients with AERD. Diagnostic aspirin challenges should be offered to patients with suspected AERD before ESS to increase diagnostic accuracy. Patients with established AERD could undergo aspirin desensitizations after ESS as the severity of their aspirin-induced hypersensitivity reactions lessens.


Assuntos
Asma Induzida por Aspirina , Endoscopia , Procedimentos Cirúrgicos Nasais , Adulto , Aspirina/efeitos adversos , Asma Induzida por Aspirina/sangue , Asma Induzida por Aspirina/metabolismo , Asma Induzida por Aspirina/fisiopatologia , Asma Induzida por Aspirina/urina , Eicosanoides/sangue , Eicosanoides/urina , Feminino , Volume Expiratório Forçado , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , Seios Paranasais , Índice de Gravidade de Doença
3.
Artigo em Inglês | MEDLINE | ID: mdl-30041041

RESUMO

We have shown that epoxyeicosatrienoic acids (EETs), specifically 11,12- and 14,15-EETs, reduce adipogenesis in human mesenchymal stem cells and mouse preadipocytes (3T-3L1). In this study, we explore the effects of soluble epoxide hydrolase (sEH) deletion on various aspects of adipocyte-function, including programing for white vs. beige-like fat, and mitochondrial and thermogenic gene-expressions. We further hypothesize that EETs and heme-oxygenase 1 (HO-1) form a synergistic, functional module whose effects on adipocyte and vascular function is greater than the effects of sEH deletion alone. In in vitro studies, we examined the effect of sEH inhibitors on MSC-derived adipocytes. MSC-derived adipocytes exposed to AUDA, an inhibitor of sEH, exhibit an increased number of small and healthy adipocytes, an effect reproduced by siRNA for sEH. in vivo studies indicate that sEH deletion results in a significant decrease in adipocyte size, inflammatory adipokines NOV, TNFα, while increasing adiponectin (p < 0.05). These findings are associated with a decrease in body weight (p < 0.05), and visceral fat (p < 0.05). Importantly, sEH deletion was associated with a significant increase in Mfn1, COX 1, UCP1 and adiponectin (p < 0.03). sEH deletion was manifested by a significant increase in EETs isomers 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET and an increased EETs/DHETEs ratio. Notably, activation of HO-1 gene expression further increased the levels of EETs, suggesting that the antioxidant HO-1 system protects EETs from degradation by ROS. These results are novel in that sEH deletion, while increasing EET levels, resulted in reprograming of white fat to express mitochondrial and thermogenic genes, a phenotype characteristic of beige-fat. Thus, EETs agonist(s) and sEH inhibitors may have therapeutic potential in the treatment of metabolic syndrome and obesity.


Assuntos
Adiponectina/metabolismo , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Epóxido Hidrolases/metabolismo , Heme Oxigenase-1/metabolismo , Mitocôndrias/metabolismo , Células 3T3-L1 , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Células Cultivadas , Epóxido Hidrolases/genética , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Interferência de RNA , Solubilidade , Vasodilatadores/farmacologia
4.
Exp Neurol ; 279: 75-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26902473

RESUMO

OBJECTIVE: Cytochrome P450 epoxygenases (CYP) metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which exhibit vasodilatory, anti-inflammatory and neuroprotective actions in experimental cerebral ischemia. We evaluated the effect of endothelial-specific CYP overexpression on cerebral blood flow, inflammatory cytokine expression and tissue infarction after focal cerebral ischemia in transgenic mice. APPROACH AND RESULTS: Male and female wild-type and transgenic mice overexpressing either human CYP2J2 or CYP2C8 epoxygenases in vascular endothelium under control of the Tie2 promoter (Tie2-CYP2J2 and Tie2-CYP2C8) were subjected to 60-min middle cerebral artery occlusion (MCAO). Microvascular cortical perfusion was monitored during vascular occlusion and reperfusion using laser-Doppler flowmetry and optical imaging. Infarct size and inflammatory cytokines were measured at 24h of reperfusion by TTC and real-time quantitative PCR, respectively. Infarct size was significantly reduced in both Tie2-CYP2J2 and Tie2-CYP2C8 transgenic male mice compared to corresponding WT male mice (n=10 per group, p<0.05). Tie2-CYP2J2, but not Tie2-CYP2C8 male mice maintained higher blood flow during MCAO; however, both Tie2-CYP2J2 and Tie2-CYP2C8 had lower inflammatory cytokine expression after ischemia compared to corresponding WT males (n=10 per group for CBF and n=3 for cytokines, p<0.05). In females, a reduction in infarct was observed in the caudate-putamen, but not in the cortex or hemisphere as a whole and no differences were observed in blood flow between female transgenic and WT mice (n=10 per group). CONCLUSIONS: Overexpression of CYP epoxygenases in vascular endothelial cells protects against experimental cerebral ischemia in male mice. The mechanism of protection is in part linked to enhanced blood flow and suppression of inflammation, and is both sex- and CYP isoform-specific.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Endotélio Vascular/enzimologia , Neuroproteção , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Núcleo Caudado/patologia , Angiografia Cerebral , Circulação Cerebrovascular , Citocromo P-450 CYP2C8/biossíntese , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2J2 , Citocinas/biossíntese , Feminino , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Putamen/patologia , Caracteres Sexuais
5.
FASEB J ; 28(7): 2915-31, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24668751

RESUMO

Cytochrome P450 (CYP) 4A and 4F enzymes metabolize arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE). Although CYP4A-derived 20-HETE is known to have prohypertensive and proangiogenic properties, the effects of CYP4F-derived metabolites are not well characterized. To investigate the role of CYP4F2 in vascular disease, we generated mice with endothelial expression of human CYP4F2 (Tie2-CYP4F2-Tr). LC/MS/MS analysis revealed 2-foldincreases in 20-HETE levels in tissues and endothelial cells (ECs), relative to wild-type (WT) controls. Tie2-CYP4F2-Tr ECs demonstrated increases in growth (267.1 ± 33.4 vs. 205.0 ± 13% at 48 h) and tube formation (7.7 ± 1.1 vs. 1.6 ± 0.5 tubes/field) that were 20-HETE dependent and associated with up-regulation of prooxidant NADPH oxidase and proangiogenic VEGF. Increases in VEGF and NADPH oxidase levels were abrogated by inhibitors of NADPH oxidase and MAPK, respectively, suggesting the possibility of crosstalk between pathways. Interestingly, IL-6 levels in Tie2-CYP4F2-Tr mice (18.6 ± 2.7 vs. 7.9 ± 2.7 pg/ml) were up-regulated via NADPH oxidase- and 20-HETE-dependent mechanisms. Although Tie2-CYP4F2-Tr aortas displayed increased vasoconstriction, vasorelaxation and blood pressure were unchanged. Our findings indicate that human CYP4F2 significantly increases 20-HETE production, CYP4F2-derived 20-HETE mediates EC proliferation and angiogenesis via VEGF- and NADPH oxidase-dependent manners, and the Tie2-CYP4F2-Tr mouse is a novel model for examining the pathophysiological effects of CYP4F2-derived 20-HETE in the vasculature.-Cheng, J., Edin, M. L., Hoopes, S. L., Li, H., Bradbury, J. A., Graves, J. P., DeGraff, L. M., Lih, F. B., Garcia, V., Shaik, J. S. B., Tomer, K. B., Flake, G. P., Falck, J. R., Lee, C. R., Poloyac, S. M., Schwartzman, M. L., Zeldin, D. C. Vascular characterization of mice with endothelial expression of cytochrome P450 4F2.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Células Endoteliais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Animais , Pressão Sanguínea/genética , Células Cultivadas , Família 4 do Citocromo P450 , Citocinas/genética , Citocinas/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Estresse Oxidativo/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Regulação para Cima/genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Drug Metab Dispos ; 41(4): 763-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23315644

RESUMO

The cytochrome P450 superfamily encompasses a diverse group of enzymes that catalyze the oxidation of various substrates. The mouse CYP2J subfamily includes members that have wide tissue distribution and are active in the metabolism of arachidonic acid (AA), linoleic acid (LA), and other lipids and xenobiotics. The mouse Cyp2j locus contains seven genes and three pseudogenes located in a contiguous 0.62 megabase cluster on chromosome 4. We describe four new mouse CYP2J isoforms (designated CYP2J8, CYP2J11, CYP2J12, and CYP2J13). The four cDNAs contain open reading frames that encode polypeptides with 62-84% identity with the three previously identified mouse CYP2Js. All four new CYP2J proteins were expressed in Sf21 insect cells. Each recombinant protein metabolized AA and LA to epoxides and hydroxy derivatives. Specific antibodies, mRNA probes, and polymerase chain reaction primer sets were developed for each mouse CYP2J to examine their tissue distribution. CYP2J8 transcripts were found in the kidney, liver, and brain, and protein expression was confirmed in the kidney and brain (neuropil). CYP2J11 transcripts were most abundant in the kidney and heart, with protein detected primarily in the kidney (proximal convoluted tubules), liver, and heart (cardiomyocytes). CYP2J12 transcripts were prominently present in the brain, and CYP2J13 transcripts were detected in multiple tissues, with the highest expression in the kidney. CYP2J12 and CYP2J13 protein expression could not be determined because the antibodies developed were not immunospecific. We conclude that the four new CYP2J isoforms might be involved in the metabolism of AA and LA to bioactive lipids in mouse hepatic and extrahepatic tissues.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Expressão Gênica , Sequência de Aminoácidos , Animais , Ácido Araquidônico/metabolismo , Encéfalo/metabolismo , Isoenzimas/metabolismo , Rim/metabolismo , Ácido Linoleico/metabolismo , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Miocárdio/metabolismo
7.
Prostaglandins Other Lipid Mediat ; 104-105: 74-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23201570

RESUMO

Cyclooxygenases and their metabolites are important regulators of inflammatory responses and play critical roles in regulating the differentiation of T helper cell subsets in inflammatory diseases. In this review, we highlight new information on regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostanoids influence cytokine production by both antigen presenting cells and T cells to regulate the differentiation of naïve CD4(+) T cells to Th1, Th2 and Th17 cell phenotypes. Cyclooxygenases and PGE2 generally exacerbate Th2 and Th17 phenotypes, while suppressing Th1 differentiation. Thus, cycloxygenases may play a critical role in diseases that involve immune cell dysfunction. Targeting of cyclooxygenases and their eicosanoid products may represent a new approach for treatment of inflammatory diseases, tumors and autoimmune disorders.


Assuntos
Doenças Autoimunes/metabolismo , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Células Th1/efeitos dos fármacos , Células Th17/efeitos dos fármacos , Células Th2/efeitos dos fármacos , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Diferenciação Celular , Inibidores de Ciclo-Oxigenase/farmacologia , Citocinas/imunologia , Citocinas/metabolismo , Dinoprostona/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Células Th1/imunologia , Células Th1/patologia , Células Th17/imunologia , Células Th17/patologia , Células Th2/imunologia , Células Th2/patologia
8.
FASEB J ; 25(10): 3436-47, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21697548

RESUMO

Cytochrome P450 (CYP) epoxygenases CYP2C8 and CYP2J2 generate epoxyeicosatrienoic acids (EETs) from arachidonic acid. Mice with expression of CYP2J2 in cardiomyocytes (αMHC-CYP2J2 Tr) or treated with synthetic EETs have increased functional recovery after ischemia/reperfusion (I/R); however, no studies have examined the role of cardiomyocyte- vs. endothelial-derived EETs or compared the effects of different CYP epoxygenase isoforms in the ischemic heart. We generated transgenic mice with increased endothelial EET biosynthesis (Tie2-CYP2C8 Tr and Tie2-CYP2J2 Tr) or EET hydrolysis (Tie2-sEH Tr). Compared to wild-type (WT), αMHC-CYP2J2 Tr hearts showed increased recovery of left ventricular developed pressure (LVDP) and decreased infarct size after I/R. In contrast, LVDP recovery and infarct size were unchanged in Tie2-CYP2J2 Tr and Tie2-sEH Tr hearts. Surprisingly, compared to WT, Tie2-CYP2C8 Tr hearts had significantly reduced LVDP recovery (from 21 to 14%) and increased infarct size after I/R (from 51 to 61%). Tie2-CYP2C8 Tr hearts also exhibited increased reactive oxygen species (ROS) generation, dihydroxyoctadecenoic acid (DiHOME) formation, and coronary resistance after I/R. ROS scavengers and CYP2C8 inhibition reversed the detrimental effects of CYP2C8 expression in Tie2-CYP2C8 Tr hearts. Treatment of WT hearts with 250 nM 9,10-DiHOME decreased LVDP recovery compared to vehicle (16 vs. 31%, respectively) and increased coronary resistance after I/R. These data demonstrate that increased ROS generation and enhanced DiHOME synthesis by endothelial CYP2C8 impair functional recovery and mask the beneficial effects of increased EET production following I/R.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Endotélio Vascular/metabolismo , Coração/fisiologia , Traumatismo por Reperfusão/metabolismo , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/metabolismo , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Ácidos Oleicos/metabolismo , Regiões Promotoras Genéticas , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptor TIE-2
9.
Am J Respir Cell Mol Biol ; 44(5): 648-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20595465

RESUMO

Regions of diminished ventilation are often evident during functional pulmonary imaging studies, including hyperpolarized gas magnetic resonance imaging (MRI), positron emission tomography, and computed tomography (CT). The objective of this study was to characterize the hypointense regions observed via (3)He MRI in a murine model of acute lung injury. LPS at doses ranging from 15-50 µg was intratracheally administered to C57BL/6 mice under anesthesia. Four hours after exposure to either LPS or saline vehicle, mice were imaged via hyperpolarized (3)He MRI. All images were evaluated to identify regions of hypointense signals. Lungs were then characterized by conventional histology, or used to obtain tissue samples from regions of normal and hypointense (3)He signals and analyzed for cytokine content. The characterization of (3)He MRI images identified three distinct types of hypointense patterns: persistent defects, atelectatic defects, and dorsal lucencies. Persistent defects were associated with the administration of LPS. The number of persistent defects depended on the dose of LPS, with a significant increase in mean number of defects in 30-50-µg LPS-dosed mice versus saline-treated control mice. Atelectatic defects predominated in LPS-dosed mice under conditions of low-volume ventilation, and could be reversed with deep inspiration. Dorsal lucencies were present in nearly all mice studied, regardless of the experimental conditions, including control animals that did not receive LPS. A comparison of (3)He MRI with histopathology did not identify tissue abnormalities in regions of low (3)He signal, with the exception of a single region of atelectasis in one mouse. Furthermore, no statistically significant differences were evident in concentrations of IL-1ß, IL-6, macrophage inflammatory protein (MIP)-1α, MIP-2, chemokine (C-X-C motif) ligand 1 (KC), TNFα, and monocyte chemotactic protein (MCP)-1 between hypointense and normally ventilated lung regions in LPS-dosed mice. Thus, this study defines the anatomic, functional, and biochemical characteristics of ventilation defects associated with the administration of LPS in a murine model of acute lung injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Imageamento por Ressonância Magnética/métodos , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CXCL2/metabolismo , Escherichia coli/metabolismo , Hélio , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/imunologia , Pulmão/metabolismo , Pneumopatias/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X/métodos , Capacidade Pulmonar Total , Fator de Necrose Tumoral alfa/metabolismo
10.
FASEB J ; 25(2): 703-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21059750

RESUMO

Cytochrome P-450 (CYP)-derived epoxyeicosatrienoic acids (EETs) possess potent anti-inflammatory effects in vitro. However, the effect of increased CYP-mediated EET biosynthesis and decreased soluble epoxide hydrolase (sEH, Ephx2)-mediated EET hydrolysis on vascular inflammation in vivo has not been rigorously investigated. Consequently, we characterized acute vascular inflammatory responses to endotoxin in transgenic mice with endothelial expression of the human CYP2J2 and CYP2C8 epoxygenases and mice with targeted disruption of Ephx2. Compared to wild-type controls, CYP2J2 transgenic, CYP2C8 transgenic, and Ephx2(-/-) mice each exhibited a significant attenuation of endotoxin-induced activation of nuclear factor (NF)-κB signaling, cellular adhesion molecule, chemokine and cytokine expression, and neutrophil infiltration in lung in vivo. Furthermore, attenuation of endotoxin-induced NF-κB activation and cellular adhesion molecule and chemokine expression was observed in primary pulmonary endothelial cells isolated from CYP2J2 and CYP2C8 transgenic mice. This attenuation was inhibited by a putative EET receptor antagonist and CYP epoxygenase inhibitor, directly implicating CYP epoxygenase-derived EETs with the observed anti-inflammatory phenotype. Collectively, these data demonstrate that potentiation of the CYP epoxygenase pathway by either increased endothelial EET biosynthesis or globally decreased EET hydrolysis attenuates NF-κB-dependent vascular inflammatory responses in vivo and may serve as a viable anti-inflammatory therapeutic strategy.


Assuntos
Hidrocarboneto de Aril Hidroxilases/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Epóxido Hidrolases/metabolismo , Inflamação/enzimologia , Doenças Vasculares/enzimologia , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Células Cultivadas , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Células Endoteliais/fisiologia , Endotoxemia/induzido quimicamente , Epóxido Hidrolases/genética , Feminino , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Transgênicos
11.
Am J Physiol Heart Circ Physiol ; 297(1): H37-46, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19429816

RESUMO

Human cytochrome P-450 (CYP)2J2 is abundant in heart and active in biosynthesis of epoxyeicosatrienoic acids (EETs). Recently, we demonstrated that these eicosanoid products protect myocardium from ischemia-reperfusion injury. The present study utilized transgenic (Tr) mice with cardiomyocyte-specific overexpression of human CYP2J2 to investigate protection toward toxicity resulting from acute (0, 5, or 15 mg/kg daily for 3 days, followed by 24-h recovery) or chronic (0, 1.5, or 3.0 mg/kg biweekly for 5 wk, followed by 2-wk recovery) doxorubicin (Dox) administration. Acute treatment resulted in marked elevations of serum lactate dehydrogenase and creatine kinase levels that were significantly greater in wild-type (WT) than CYP2J2 Tr mice. Acute treatment also resulted in less activation of stress response enzymes in CYP2J2 Tr mice (catalase 750% vs. 300% of baseline, caspase-3 235% vs. 165% of baseline in WT vs. CYP2J2 Tr mice). Moreover, CYP2J2 Tr hearts exhibited less Dox-induced cardiomyocytes apoptosis (measured by TUNEL) compared with WT hearts. After chronic treatment, comparable decreases in body weight were observed in WT and CYP2J2 Tr mice. However, cardiac function, assessed by measurement of fractional shortening with M-mode transthoracic echocardiography, was significantly higher in CYP2J2 Tr than WT hearts after chronic Dox treatment (WT 37 +/- 2%, CYP2J2 Tr 47 +/- 1%). WT mice also had larger increases in beta-myosin heavy chain and cardiac ankryin repeat protein compared with CYP2J2 Tr mice. CYP2J2 Tr hearts had a significantly higher rate of Dox metabolism than WT hearts (2.2 +/- 0.25 vs. 1.6 +/- 0.50 ng.min(-1).100 microg protein(-1)). In vitro data from H9c2 cells demonstrated that EETs attenuated Dox-induced mitochondrial damage. Together, these data suggest that cardiac-specific overexpression of CYP2J2 limited Dox-induced toxicity.


Assuntos
Antibióticos Antineoplásicos/antagonistas & inibidores , Antibióticos Antineoplásicos/toxicidade , Sistema Enzimático do Citocromo P-450/fisiologia , Doxorrubicina/antagonistas & inibidores , Doxorrubicina/toxicidade , Cardiopatias/induzido quimicamente , Cardiopatias/fisiopatologia , Animais , Biomarcadores , Creatina Quinase/metabolismo , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Ecocardiografia , Feminino , Expressão Gênica/genética , Testes de Função Cardíaca , Humanos , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , L-Lactato Desidrogenase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos
12.
FASEB J ; 22(12): 4096-108, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18716027

RESUMO

The cytochrome P450 (CYP) enzymes participate in a wide range of biochemical functions, including metabolism of arachidonic acid and steroid hormones. Mouse CYP2J5 is abundant in the kidney where its products, the cis-epoxyeicosatrienoic acids (EETs), modulate sodium transport and vascular tone. To define the physiological role of CYP2J5 in the kidney, knockout mice were generated using a conventional gene targeting approach. Cyp2j5 (-/-) mice develop normally and exhibit no overt renal pathology. While renal EET biosynthesis was apparently unaffected by the absence of CYP2J5, deficiency of this CYP in female mice was associated with increased blood pressure, enhanced proximal tubular transport rates, and exaggerated afferent arteriolar responses to angiotensin II and endothelin I. Interestingly, plasma 17beta-estradiol levels were reduced in female Cyp2j5 (-/-) mice and estrogen replacement restored blood pressure and vascular responsiveness to normal levels. There was no evidence of enhanced estrogen metabolism, or altered expression or activities of steroidogenic enzymes in female Cyp2j5 (-/-) mice, but their plasma levels of luteinizing hormone and follicle stimulating hormone were inappropriately low. Together, our findings illustrate a sex-specific role for CYP2J5 in regulation of blood pressure, proximal tubular transport, and afferent arteriolar responsiveness via an estrogen-dependent mechanism.


Assuntos
Pressão Sanguínea/genética , Sistema Enzimático do Citocromo P-450/deficiência , Angiotensina II/farmacologia , Animais , Ácido Araquidônico/metabolismo , Arteríolas/efeitos dos fármacos , Citocromo P-450 CYP2J2 , Endotelina-1/farmacologia , Estradiol/sangue , Terapia de Reposição de Estrogênios , Feminino , Hormônio Foliculoestimulante/sangue , Túbulos Renais Proximais/fisiologia , Hormônio Luteinizante/sangue , Masculino , Camundongos , Ovário/fisiologia , Fatores Sexuais , Testosterona/sangue , Vasoconstritores/farmacologia
13.
Mol Pharmacol ; 72(4): 1063-73, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17652182

RESUMO

CYP2J2 is abundant in cardiac tissue and active in the biosynthesis of eicosanoids such as epoxyeicosatrienoic acids (EETs). To determine the effects of CYP2J2 and its eicosanoid products in the heart, we characterized the electrophysiology of single cardiomyocytes isolated from adult transgenic (Tr) mice with cardiac-specific overexpression of CYP2J2. CYP2J2 Tr cardiomyocytes had a shortened action potential. At 90% repolarization, the action potential duration (APD) was 30.6 +/- 3.0 ms (n = 22) in wild-type (Wt) cells and 20.2 +/- 2.3 ms (n = 19) in CYP2J2 Tr cells (p < 0.005). This shortening was probably due to enhanced maximal peak transient outward K(+) currents (I(to,peak)), which were 38.6 +/- 2.8 and 54.4 +/- 4.9 pA/pF in Wt and CYP2J2 Tr cells, respectively (p < 0.05). In contrast, the late portion of the transient outward K(+) current (I(to,280ms)), the slowly inactivating outward K(+) current (I(K,slow)), and the voltage-gated Na(+) current (I(Na)) were not significantly altered in CYP2J2 Tr cells. N-Methylsulphonyl-6-(2-proparglyloxy-phenyl)hexanamide (MS-PPOH), a specific inhibitor of EET biosynthesis, significantly reduced I(to,peak) and increased APD in CYP2J2 Tr cardiomyocytes but not in Wt cells. Intracellular dialysis with a monoclonal antibody against CYP2J2 also significantly reduced I(to,peak) and increased APD in CYP2J2 Tr cardiomyocytes. Addition of 11,12-EET or 8-bromo-cAMP significantly reversed the MS-PPOH- or monoclonal antibody-induced changes in I(to,peak) and APD in CYP2J2 Tr cells. Together, our data demonstrate that shortening of the action potential in CYP2J2 Tr cardiomyocytes is associated with enhanced I(to,peak) via an EET-dependent, cAMP-mediated mechanism.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Coração/fisiologia , Miocárdio/citologia , Oxigenases/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Potenciais de Ação , Amidas/farmacologia , Animais , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Coração/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miocárdio/metabolismo , Oxigenases/genética , Potássio/metabolismo
14.
Am J Respir Cell Mol Biol ; 37(3): 300-8, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17496151

RESUMO

Cyclooxygenase (COX)-derived eicosanoids have been implicated in the pathogenesis of pulmonary fibrosis. Uncertainty regarding the influence of COX-2 on experimental pulmonary fibrosis prompted us to clarify the fibrotic and functional effects of intratracheal bleomycin administration in mice genetically deficient in COX-2. Further, the effects of airway-specific COX-1 overexpression on fibrotic and functional outcomes in wild-type and COX-2 knockout mice were assessed. Equivalent increases in airway cell influx, lung collagen content, and histopathologic evidence of fibrosis were observed in wild-type and COX-2 knockout mice 21 d after bleomycin treatment, suggesting that COX-2 deficiency did not alter the extent or severity of fibrosis in this model. However, bleomycin-induced alterations in respiratory mechanics were more severe in COX-2 knockout mice than in wild-type mice, as illustrated by a greater decrease in static compliance compared with genotype-matched, saline-treated control mice (26 +/- 3% versus 11 +/- 4% decreases for COX-2 knockout and wild-type mice, respectively; P < 0.05). The influence of COX-1 overexpression in airway Clara cells was also examined. Whereas the fibrotic effects of bleomycin were not altered in wild-type or COX-2 knockout mice overexpressing COX-1, the exaggerated lung function decrement in bleomycin-treated COX-2 knockout mice was prevented by COX-1 overexpression and coincided with decreased airway cysteinyl leukotriene levels. Collectively, these data suggest an important regulatory role for COX-2 in the maintenance of lung function in the setting of lung fibrosis, but not in the progression of the fibrotic process per se.


Assuntos
Bleomicina/toxicidade , Ciclo-Oxigenase 2/deficiência , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Animais , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/genética , Eicosanoides/metabolismo , Feminino , Expressão Gênica , Humanos , Pulmão/enzimologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Mecânica Respiratória
15.
Drug Metab Dispos ; 35(4): 682-8, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17220242

RESUMO

The cytochrome P450 (P450) enzymes CYP2C8, CYP2C9, and CYP2J2 metabolize arachidonic acid to epoxyeicosatrienoic acids, which are known to be vital in regulation of vascular tone and cardiovascular homeostasis. Because there is limited information regarding the relative expression of these P450 enzymes in cardiovascular tissues, this study examined the expression of CYP2C8, CYP2C9, and CYP2J2 mRNA and protein in human heart, aorta, and coronary artery samples by real-time polymerase chain reaction, immunoblotting, and immunohistochemistry. CYP2J2 and CYP2C9 mRNA levels were highly variable in human hearts, whereas CYP2C8 mRNA was present in lower abundance. CYP2J2 mRNA was approximately 10(3) times higher than CYP2C9 or CYP2C8 in human heart. However, CYP2C9 mRNA was more abundant than CYP2J2 or CYP2C8 in one ischemic heart. In human aorta, mean CYP2C9 mRNA levels were approximately 50 times higher than that of CYP2J2 and 5-fold higher than that of CYP2C8. In human coronary artery, mean values for CYP2C9 mRNA were approximately 2-fold higher than that of CYP2J2 mRNA and 6-fold higher than that of CYP2C8 mRNA. Immunoblotting results show relatively high levels of CYP2J2 and CYP2C8 protein in human hearts, which was confirmed by immunohistochemistry. CYP2C9 protein was also detected at high levels in one ischemic heart by immunoblotting. CYP2C9 was present at higher levels than CYPJ2 in aorta and coronary artery, whereas CYP2C8 protein was below the limits of detection. The expression of CYP2J2 and CYP2C8 in human heart, and CYPC9 and CYP2J2 in aorta and coronary artery is consistent with a physiological role for these enzymes in these tissues.


Assuntos
Hidrocarboneto de Aril Hidroxilases/análise , Sistema Cardiovascular/enzimologia , Sistema Enzimático do Citocromo P-450/análise , Regulação Enzimológica da Expressão Gênica , Oxigenases/análise , Adulto , Idoso , Aorta/enzimologia , Hidrocarboneto de Aril Hidroxilases/genética , Western Blotting , Vasos Coronários/enzimologia , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/enzimologia , Miocárdio/enzimologia , Oxigenases/genética , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Am J Respir Crit Care Med ; 175(2): 126-35, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17095746

RESUMO

RATIONALE: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. OBJECTIVES: To examine the role of estrogen receptors in modulating lung function and airway responsiveness using estrogen receptor-deficient mice. METHODS: Lung function was assessed by a combination of whole-body barometric plethysmography, invasive measurement of airway resistance, and isometric force measurements in isolated bronchial rings. M2 muscarinic receptor expression was assessed by Western blotting, and function was assessed by electrical field stimulation of tracheas in the presence/absence of gallamine. Allergic airway disease was examined after ovalbumin sensitization and exposure. MEASUREMENTS AND MAIN RESULTS: Estrogen receptor-alpha knockout mice exhibit a variety of lung function abnormalities and have enhanced airway responsiveness to inhaled methacholine and serotonin under basal conditions. This is associated with reduced M2 muscarinic receptor expression and function in the lungs. Absence of estrogen receptor-alpha also leads to increased airway responsiveness without increased inflammation after allergen sensitization and challenge. CONCLUSIONS: These data suggest that estrogen receptor-alpha is a critical regulator of airway hyperresponsiveness in mice.


Assuntos
Hiper-Reatividade Brônquica/etiologia , Receptor alfa de Estrogênio/fisiologia , Pulmão/fisiopatologia , Receptor Muscarínico M2/metabolismo , Hipersensibilidade Respiratória/etiologia , Acetilcolina/metabolismo , Alérgenos/imunologia , Animais , Hiper-Reatividade Brônquica/sangue , Hiper-Reatividade Brônquica/fisiopatologia , Citocinas/metabolismo , Eletrofisiologia , Receptor alfa de Estrogênio/genética , Estrogênios/sangue , Feminino , Inflamação/imunologia , Pulmão/efeitos dos fármacos , Pulmão/inervação , Cloreto de Metacolina/farmacologia , Camundongos , Camundongos Knockout , Ovalbumina/imunologia , Nervos Periféricos/fisiologia , Pletismografia , Receptor Muscarínico M2/análise , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/fisiopatologia , Serotonina/farmacologia , Traqueia/efeitos dos fármacos , Traqueia/inervação , Traqueia/fisiopatologia
17.
J Physiol ; 575(Pt 2): 627-44, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16793897

RESUMO

We have reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP) epoxygenase metabolites of arachidonic acid (AA), are potent sarcolemmal ATP-sensitive K+ (KATP) channel activators. However, activation of cardiac and vascular KATP channels by endogenously produced EETs under physiological intracellular conditions has not been demonstrated and direct comparison of the mechanisms whereby EETs activate the KATP channels in cardiac myocytes versus vascular smooth muscle cells has not been made. In this study, we examined the effects of AA on KATP channels in freshly isolated cardiac myocytes from rats, wild-type (WT) and transgenic mice overexpressing CYP2J2 cDNA, and mesenteric arterial smooth muscle cells from rats. We also compared the activation of cardiac and vascular KATP channels by extracellularly and intracellularly applied 11,12-EET. We found that 1 microm AA enhanced KATP channel activities in both cardiac and vascular smooth muscle cells, and the AA effects were inhibited by preincubation with CYP epoxygenase inhibitors. Baseline cardiac KATP current densities in CYP2J2 transgenic mice were 190% higher than those of WT mice, and both were reduced to similar levels by CYP epoxygenase inhibition. Western blot analysis showed that expression of Kir6.2 and SUR2A was similar between WT and CYP2J2 transgenic hearts. 11,12-EET (5 microm) applied intracellularly enhanced the KATP currents by 850% in cardiac myocytes, but had no effect in vascular smooth muscle cells. In contrast, 11,12-EET (5 microm) applied extracellularly increased KATP currents by 520% in mesenteric arterial smooth muscle cells, but by only 209% in cardiac myocytes. Preincubation with 100 microm m-iodobenzylguanidine or 5 microm myristoylated PKI amide did not alter the activation of cardiac KATP channels by 5 microm 11,12-EET, but significantly inhibited activation of vascular KATP channels. Moreover, EET only enhanced the inward component of cardiac KATP currents, but activated both the inward and outward components of vascular KATP currents. Our results indicate that endogenously derived CYP metabolites of AA potently activate cardiac and vascular KATP channels. EETs regulate cardiac electrophysiology and vascular tone by KATP channel activation, albeit through different mechanisms: the cardiac KATP channels are directly activated by EETs, whereas activation of the vascular KATP channels by EETs is protein kinase A dependent.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Artérias/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Vasodilatadores/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Ácido Araquidônico/metabolismo , Ácido Araquidônico/farmacologia , Artérias/citologia , Artérias/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Citocromo P-450 CYP2J2 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Oxigenases/genética , Oxigenases/metabolismo , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
J Immunol ; 175(10): 6878-84, 2005 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16272346

RESUMO

Influenza is a significant cause of morbidity and mortality worldwide despite extensive research and vaccine availability. The cyclooxygenase (COX) pathway is important in modulating immune responses and is also a major target of nonsteroidal anti-inflammatory drugs (NSAIDs) and the newer COX-2 inhibitors. The purpose of the present study was to examine the effect of deficiency of COX-1 or COX-2 on the host response to influenza. We used an influenza A viral infection model in wild type (WT), COX-1-/-, and COX-2-/- mice. Infection induced less severe illness in COX-2-/- mice in comparison to WT and COX-1-/- mice as evidenced by body weight and body temperature changes. Mortality was significantly reduced in COX-2-/- mice. COX-1-/- mice had enhanced inflammation and earlier appearance of proinflammatory cytokines in the BAL fluid, whereas the inflammatory and cytokine responses were blunted in COX-2-/- mice. However, lung viral titers were markedly elevated in COX-2-/- mice relative to WT and COX-1-/- mice on day 4 of infection. Levels of PGE2 were reduced in COX-1-/- airways whereas cysteinyl leukotrienes were elevated in COX-2-/- airways following infection. Thus, deficiency of COX-1 and COX-2 leads to contrasting effects in the host response to influenza infection, and these differences are associated with altered production of prostaglandins and leukotrienes following infection. COX-1 deficiency is detrimental whereas COX-2 deficiency is beneficial to the host during influenza viral infection.


Assuntos
Ciclo-Oxigenase 1/deficiência , Ciclo-Oxigenase 2/deficiência , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/enzimologia , Influenza Humana/imunologia , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/imunologia , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Citocinas/biossíntese , Dinoprostona/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Mol Pharmacol ; 66(6): 1607-16, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15361551

RESUMO

CYP2J2 is abundant in cardiomyocytes and is involved in the metabolism of arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs), which affect multiple cell functions. In this study, we investigated the effect of overexpression of CYP2J2 on cardiac L-type Ca2+ currents (ICa) in adult transgenic mice. Cardiac-specific overexpression of CYP2J2 was achieved using the alpha-myosin heavy chain promoter. ICa was recorded from isolated ventricular cardiomyocytes. Compared with the wild-type cardiomyocytes (n = 60), the density of ICa was significantly increased by 40 +/- 9% in the CYP2J2 transgenic cardiomyocytes (n = 71; P < 0.001). N-Methylsulfonyl-6-(2-proparglyloxyphenyl)hexanamide (MS-PPOH), a specific inhibitor of EET biosynthesis, and clotrimazole, a cytochrome P450 inhibitor, significantly reduced ICa in both wild-type and transgenic cardiomyocytes; however, MS-PPOH inhibited ICa to a greater extent in the CYP2J2 transgenic cells (n = 10) than in the wild-type cells (n = 10; P < 0.01). Addition of 11,12-EET significantly restored ICa in MS-PPOH-treated cells. Intracellular dialysis with either of two inhibitory monoclonal antibodies against CYP2J2 significantly reduced ICa in both wild-type and transgenic mice. Membrane-permeable 8-bromo-cAMP and the beta-adrenergic agonist isoproterenol significantly reversed the monoclonal antibody-induced inhibition of ICa. In addition, the total protein level of the alpha1 subunit of the Cav1.2 L-type Ca2+ channel was not altered in CYP2J2 transgenic hearts, but the phosphorylated portion was markedly increased. In conclusion, overexpression of CYP2J2 increases ICa in CYP2J2 transgenic cardiomyocytes via a mechanism that involves cAMP-protein kinase A-dependent phosphorylation of the L-type Ca2+ channel.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Sistema Enzimático do Citocromo P-450/genética , Miocárdio/enzimologia , Oxigenases/genética , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Citocromo P-450 CYP2J2 , Coração/fisiologia , Humanos , Isoproterenol/farmacologia , Camundongos , Camundongos Transgênicos , Fosforilação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/metabolismo , Função Ventricular
20.
Mol Pharmacol ; 65(5): 1148-58, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15102943

RESUMO

The mammalian CYP2C subfamily is one of the largest and most complicated in the cytochrome P450 superfamily. In this report, we describe the organization of the mouse Cyp2c locus, which contains 15 genes and four pseudogenes, all of which are located in a 5.5-megabase region on chromosome 19. We cloned three novel mouse CYP2C cDNAs (designated CYP2C50, CYP2C54, and CYP2C55) from mouse heart, liver, and colon, respectively. All three cDNAs contain open reading frames that encode 490 amino acid polypeptides that are 57 to 95% identical to other CYP2Cs. The recombinant CYP2C proteins were expressed in Escherichia coli after N-terminal modification, partially purified, and shown to be active in the metabolism of both arachidonic acid (AA) and linoleic acid, albeit with different catalytic efficiencies and profiles. CYP2C50 and CYP2C54 metabolize AA to epoxyeicosatrienoic acids (EETs) primarily, and linoleic acid to epoxyoctadecenoic acids (EOAs) primarily, whereas CYP2C55 metabolizes AA to EETs and hydroxyeicosatetraenoic acids and linoleic acid to EOAs and hydroxyoctadecadienoic acids. Northern blotting and reverse transcription-polymerase chain reaction analysis reveal that CYP2C50 transcripts are abundant in liver and heart; CYP2C54 transcripts are present in liver, kidney, and stomach; and CYP2C55 transcripts are abundant in liver, colon, and kidney. Immunoblotting studies demonstrate that CYP2C50 protein is expressed in liver and heart, CYP2C54 protein is detected primarily in liver, and CYP2C55 protein is present primarily in colon. Immunohistochemistry reveals that CYP2C55 is most abundant in surface columnar epithelium in the cecum. We conclude that these new CYP2C enzymes are probably involved in AA and linoleic acid metabolism in mouse hepatic and extrahepatic tissues.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Ácidos Graxos/metabolismo , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Cromossomos , Clonagem Molecular , Sistema Enzimático do Citocromo P-450/metabolismo , Família 2 do Citocromo P450 , DNA Complementar/análise , Feminino , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Oxirredução , RNA Mensageiro/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA