Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 493: 89-102, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368523

RESUMO

Ethanol is a known vertebrate teratogen that causes craniofacial defects as a component of fetal alcohol syndrome (FAS). Our results show that sea urchin embryos treated with ethanol similarly show broad skeletal patterning defects, potentially analogous to the defects associated with FAS. The sea urchin larval skeleton is a simple patterning system that involves only two cell types: the primary mesenchymal cells (PMCs) that secrete the calcium carbonate skeleton and the ectodermal cells that provide migratory, positional, and differentiation cues for the PMCs. Perturbations in RA biosynthesis and Hh signaling pathways are thought to be causal for the FAS phenotype in vertebrates. Surprisingly, our results indicate that these pathways are not functionally relevant for the teratogenic effects of ethanol in developing sea urchins. We found that developmental morphology as well as the expression of some ectodermal and PMC genes was delayed by ethanol exposure. Temporal transcriptome analysis revealed significant impacts of ethanol on signaling and metabolic gene expression, and a disruption in the timing of GRN gene expression that includes both delayed and precocious gene expression throughout the specification network. We conclude that the skeletal patterning perturbations in ethanol-treated embryos likely arise from a loss of temporal synchrony within and between the instructive and responsive tissues.


Assuntos
Etanol , Células-Tronco Mesenquimais , Animais , Etanol/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Ouriços-do-Mar , Ectoderma , Células-Tronco Mesenquimais/metabolismo , Embrião não Mamífero/metabolismo
2.
Methods Cell Biol ; 151: 433-442, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948024

RESUMO

During sea urchin embryogenesis, primary mesenchyme cells (PMCs) follow a stereotypical migratory program, arrange into a primary pattern, then begin to secrete a bilaterally symmetric calcium carbonate skeleton. Recently identified genes are expressed in spatially-restricted domains within the PMC population (Sun & Ettensohn, 2014). To better understand the molecular mechanisms orchestrating PMC positioning, we are characterizing the expression profiles of PMC subset-specific genes. To deconvolve the spatiotemporal expression patterns within PMCs, we detect cell-specific mRNA expression with combined RNA fluorescence in situ hybridization and immunolabeling of PMCs. Subsequent confocal microscopy provides 3D position and expression information for individual PMCs. We extract PMC positions and relative gene expression levels, then model these results using open-source 3D modeling software. This versatile protocol can be extended to other models and systems.


Assuntos
Hibridização in Situ Fluorescente/métodos , Mesoderma/crescimento & desenvolvimento , Microscopia de Fluorescência/métodos , Ouriços-do-Mar/genética , Animais , Desenvolvimento Embrionário/genética , Gástrula/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Mesenquimais/citologia , Ouriços-do-Mar/crescimento & desenvolvimento
4.
Development ; 143(4): 703-14, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26755701

RESUMO

The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning.


Assuntos
Padronização Corporal/genética , Proteoglicanas/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/genética , Análise de Sequência de RNA/métodos , Sulfatos/metabolismo , Animais , Padronização Corporal/efeitos dos fármacos , Proteínas de Transporte de Cátions/metabolismo , Diferenciação Celular/efeitos dos fármacos , Ectoderma/efeitos dos fármacos , Ectoderma/enzimologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mesoderma/citologia , Modelos Biológicos , Níquel/toxicidade , Ouriços-do-Mar/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Dev Biol ; 406(2): 259-70, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282894

RESUMO

The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles.


Assuntos
Exoesqueleto/química , Embrião não Mamífero/enzimologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Morfogênese/fisiologia , Ouriços-do-Mar/embriologia , Animais , Primers do DNA/genética , Embrião não Mamífero/citologia , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação Enzimológica da Expressão Gênica/genética , Imidazóis , Hibridização in Situ Fluorescente , Minerais/análise , Reação em Cadeia da Polimerase , Ouriços-do-Mar/enzimologia
6.
Proc Natl Acad Sci U S A ; 109(14): 5334-9, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22431628

RESUMO

Sea urchins are an important model for experiments at the intersection of development and systems biology, and technical innovations that enhance the utility of this model are of great value. This study explores pantropic retroviruses as a transduction tool for sea urchin embryos, and demonstrates that pantropic retroviruses infect sea urchin embryos with high efficiency and genomically integrate at a copy number of one per cell. We successfully used a self-inactivation strategy to both insert a sea urchin-specific enhancer and disrupt the endogenous viral enhancer. The resulting self-inactivating viruses drive global and persistent gene expression, consistent with genomic integration during the first cell cycle. Together, these data provide substantial proof of principle for transduction technology in sea urchin embryos.


Assuntos
Retroviridae/fisiologia , Ouriços-do-Mar/embriologia , Transdução Genética , Animais , Sequência de Bases , Linhagem Celular , Primers do DNA , Dosagem de Genes , Reação em Cadeia da Polimerase
7.
Dev Biol ; 300(1): 293-307, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16959243

RESUMO

Sea urchin eggs and early cleavage stage embryos provide an example of regulated gene expression at the level of translation. The availability of the sea urchin genome offers the opportunity to investigate the "translational control" toolkit of this model system. The annotation of the genome reveals that most of the factors implicated in translational control are encoded by nonredundant genes in echinoderm, an advantage for future functional studies. In this paper, we focus on translation factors that have been shown or suggested to play crucial role in cell cycle and development of sea urchin embryos. Addressing the cap-binding translational control, three closely related eIF4E genes (class I, II, III) are present, whereas its repressor 4E-BP and its activator eIF4G are both encoded by one gene. Analysis of the class III eIF4E proteins in various phyla shows an echinoderm-specific amino acid substitution. Furthermore, an interaction site between eIF4G and poly(A)-binding protein is uncovered in the sea urchin eIF4G proteins and is conserved in metazoan evolution. In silico screening of the sea urchin genome has uncovered potential new regulators of eIF4E sharing the common eIF4E recognition motif. Taking together, these data provide new insights regarding the strong requirement of cap-dependent translation following fertilization. The genome analysis gives insights on the complexity of eEF1B structure and motifs of functional relevance, involved in the translational control of gene expression at the level of elongation. Finally, because deregulation of translation process can lead to diseases and tumor formation in humans, the sea urchin orthologs of human genes implicated in human diseases and signaling pathways regulating translation were also discussed.


Assuntos
Genoma , Biossíntese de Proteínas , Ouriços-do-Mar/genética , Sequência de Aminoácidos , Animais , Ciclo Celular/genética , Diferenciação Celular/genética , Sequência Conservada , Regulação da Expressão Gênica , Dados de Sequência Molecular , Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Proteínas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Hepatology ; 37(4): 824-32, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12668975

RESUMO

The c-Jun-N-terminal kinase (JNK) pathway is strongly activated after partial hepatectomy (PH), but its role in hepatocyte proliferation is not known. In this study, JNK activity was blocked with the small molecule inhibitor JNK SP600125 in vivo and in vitro as shown by a reduction of c-Jun phosphorylation, AP-1 DNA binding activity, and c-jun messenger RNA (mRNA) expression. SP600125 inhibited proliferating cell nuclear antigen (PCNA) expression, cyclin D1 mRNA and protein expression and reduced mitotic figures after PH. Survival was reduced significantly 3 days after PH in SP600125-treated versus vehicle-treated rats (3 of 11 vs. 8 of 9, P <.01). In epidermal growth factor (EGF)-treated primary cultures of rat hepatocytes, SP600125 decreased (3)H-thymidine uptake, cyclin D1 mRNA and protein expression, and inhibited the EGF-induced transcription of a cyclin D1 promoter-driven reporter gene. The defective regeneration and the decreased survival in SP600125-treated rats did not result from a major increase in apoptosis as shown by normal levels of caspase 3 activity and only slight increases in apoptotic figures. In conclusion, our data show that JNK drives G0 to G1 transition in hepatocytes and that cyclin D1 is a downstream target of the JNK pathway during liver regeneration.


Assuntos
Ciclina D1/metabolismo , Regeneração Hepática/fisiologia , Fígado/patologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Animais , Antracenos/farmacologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/fisiologia , Células Cultivadas , Ciclina D1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hepatectomia/métodos , Hepatectomia/mortalidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Fígado/efeitos dos fármacos , Masculino , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Taxa de Sobrevida
9.
Hepatology ; 36(2): 315-25, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12143039

RESUMO

Tumor necrosis factor (TNF) triggers distinct pathways in liver cells through TNF receptor 1 (TNF-R1) via adapter molecules, including the intracellular cascades leading to apoptosis, nuclear factor-kappa B (NF-kappa B), and Jun kinase (JNK) activation. TNF-dependent activation of NF-kappa B induces the transcription of antiapoptotic genes that renders liver cells resistant against TNF-induced apoptosis. In contrast, the role of JNK during TNF-induced apoptosis is less clear, so we studied its role during this process. Hepatoma cells treated with TNF and cycloheximide undergo apoptosis, which is proceeded by a strong activation of JNK. Adenoviral vectors (adv) were tested to block TNF-dependent JNK activation selectively. An adv expressing dominant-negative (dn) TRAF2 inhibited only JNK and not ERK or NF-kappa B activation. However, the effect of inhibiting JNK activation with a dn TAK1 virus was also specific but was stronger than that via dn TRAF2. In further experiments, the inhibitory effect of dn TAK1 on JNK was used to define its role during TNF-dependent apoptosis. Inhibition of JNK by adv dn TAK1 resulted in an earlier and stronger induction of apoptosis. Interestingly, TAM67, a dn form of c-Jun, did not mediate the JNK-dependent effect on TNF-dependent apoptosis, indicating that other molecular targets are essential to confer this mechanism. However, the modified apoptosis pattern could be inhibited by adv expressing Bcl-2 or dn FADD. In conclusion, we define TAK1 as a kinase specifically involved in TNF-induced JNK activation in hepatoma cells and show that JNK transduces antiapoptotic signals, which modulate the strength and time course of FADD-dependent cell death involving mitochondrial permeability transfer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Antineoplásicos/farmacologia , Apoptose/fisiologia , Hepatócitos/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adenoviridae/genética , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular , Proteínas de Transporte/genética , Caspase 3 , Caspase 9 , Caspases/metabolismo , Cicloeximida/farmacologia , Sinergismo Farmacológico , Proteína de Domínio de Morte Associada a Fas , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Hepatócitos/citologia , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Neoplasias Hepáticas , NF-kappa B/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA