Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Res Notes ; 12(1): 223, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30975220

RESUMO

OBJECTIVE: Zero-valent iron sand filtration can remove multiple contaminants, including some types of pathogenic bacteria, from contaminated water. However, its efficacy at removing complex viral populations, such as those found in reclaimed water used for agricultural irrigation, has not been fully evaluated. Therefore, this study utilized metagenomic sequencing and epifluorescent microscopy to enumerate and characterize viral populations found in reclaimed water and zero-valent iron-sand filtered reclaimed water sampled three times during a larger greenhouse study. RESULTS: Zero-valent iron-sand filtered reclaimed water samples had significantly less virus-like particles than reclaimed water samples at all collection dates, with the reclaimed water averaging between 108 and 109 and the zero-valent iron-sand filtered reclaimed water averaging between 106 and 107 virus-like particles per mL. In addition, for both sample types, viral metagenomes (viromes) were dominated by bacteriophages of the order Caudovirales, largely Siphoviridae, and genes related to DNA metabolism. However, the proportion of sequences homologous to bacteria, as well as the abundance of genes possibly originating from a bacterial host, was higher in the viromes of zero-valent iron-sand filtered reclaimed water samples. Overall, zero-valent iron-sand filtered reclaimed water had a lower total concentration of virus-like particles and a different virome community composition compared to unfiltered reclaimed water.


Assuntos
Bactérias/genética , Caudovirales/genética , Recuperação e Remediação Ambiental/métodos , Ferro/química , Dióxido de Silício/química , Siphoviridae/genética , Adsorção , Irrigação Agrícola/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Caudovirales/classificação , Caudovirales/isolamento & purificação , DNA Bacteriano/genética , DNA Viral/genética , Filtração/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Filogenia , Siphoviridae/classificação , Siphoviridae/isolamento & purificação , Vírion/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/virologia , Purificação da Água/métodos
2.
Environ Res ; 173: 33-39, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30884436

RESUMO

The use of surface and recycled water sources for irrigation can reduce demand on critical groundwater resources. Treatment or mitigation may be necessary for the use of these alternative water sources in order to reduce risk associated with microbial pathogens present in the water. In this study, the efficacy of a zero-valent iron (ZVI) sand filter was assessed for the reduction of Listeria monocytogenes and Escherichia coli in surface water. Water recovered from an agricultural pond was inoculated with E. coli TVS353 and an environmental L. monocytogenes isolate at 7 Log10 CFU/mL and horizontally filtered over a six-month period through a PVC pipe filter, filled with 35%:65% (volume:volume) ZVI:sand or sand alone. Filtered water was used to irrigate lettuce and bacterial persistence on lettuce leaves was determined for 7 days post-irrigation. Both ZVI:sand-filtered water and sand-filtered water contained significantly (p < 0.005) lower levels of E. coli and L. monocytogenes compared to initial unfiltered inoculated water. Population reductions of E. coli and L. monocytogenes were comparable after sand filtration. However, ZVI:sand filtration resulted in significantly greater population reductions of L. monocytogenes (P < 0.05) compared to E. coli. Populations of E. coli on leaves of lettuce plants irrigated with ZVI:sand-filtered water were not significantly lower than populations on plants irrigated with sand-filtered irrigation water over the 7-day period. However, populations of L. monocytogenes on lettuce leaves irrigated with ZVI-treated water were significantly lower than counts on plants irrigated with sand-filtered irrigation water on days 3 and 4 post irrigation (p = 0.052 and p = 0.042 for days 3 and 4, respectively. The differences observed in reductions of L. monocytogenes and E. coli by ZVI filtration is due to the differing effect that ZVI disruption has on Gram-positive and Gram-negative cell walls and membranes. ZVI- sand filters show promising results as an inexpensive on-farm technology for the mitigation of enteric foodborne bacterial populations in pond water over a six-month period.


Assuntos
Irrigação Agrícola , Escherichia coli , Filtração/métodos , Listeria monocytogenes , Microbiologia da Água , Purificação da Água/métodos , Contagem de Colônia Microbiana , Ferro , Lactuca , Areia , Água
3.
Environ Res ; 172: 301-309, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822564

RESUMO

Irrigation with reclaimed water is increasing in areas that lack access to, and infrastructure for, high-level treatment and distribution. Antimicrobial residues are known to persist in conventionally treated reclaimed water, necessitating the investigation of reuse site-based mitigation options to further reduce these contaminants. We examined the effectiveness of a 50:50 volume/volume, particle matched, micro-scale zerovalent iron (ZVI)-sand filter in reducing concentrations of mixtures of antimicrobials present in pH-unadjusted conventionally treated reclaimed water. Twelve antimicrobials (azithromycin, ciprofloxacin, erythromycin, linezolid, oxacillin, oxolinic acid, penicillin G, pipemidic acid, sulfamethoxazole, triclocarban, tetracycline and vancomycin) were quantified using high performance-liquid chromatography-tandem mass spectrometry in reclaimed water, and ZVI-sand filtered reclaimed water, in a two-month long greenhouse-based experiment. Data were analyzed using a non-parametric rank-based approach. ZVI-sand filtration significantly reduced concentrations of azithromycin, ciprofloxacin, oxolinic acid, penicillin G, sulfamethoxazole, linezolid, pipemidic acid and vancomycin. Azithromycin, the antimicrobial with the highest median concentration (320 ng/L), was reduced to below the limit of detection after ZVI-sand filtration. Inorganic element (antimony, beryllium, cadmium, chromium, iron, lead, selenium and thallium) and water quality (free and total chlorine, nitrates, nitrites, pH and total dissolved solids) analyses showed that ZVI-sand filtered reclaimed water quality (nitrate, salinity, and inorganic elements) met the recommended guidelines for agricultural irrigation with reclaimed water. Based on our initial results, ZVI-sand filtration may be a promising basis for a point-of-use filtration system for reclaimed water irrigation on small-scale farms.


Assuntos
Anti-Infecciosos , Filtração , Ferro , Poluentes Químicos da Água , Purificação da Água , Água , Irrigação Agrícola , Anti-Infecciosos/isolamento & purificação , Ferro/química , Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA