Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Liver Int ; 43(11): 2365-2378, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615254

RESUMO

This thematic review aims to provide an overview of the current state of knowledge about the occurrence of giant mitochondria or megamitochondria in liver parenchymal cells. Their presence and accumulation are considered to be a major pathological hallmark of the health and fate of liver parenchymal cells that leads to overall tissue deterioration and eventually results in organ failure. The first description on giant mitochondria dates back to the 1960s, coinciding with the availability of the first generation of electron microscopes in clinical diagnostic laboratories. Detailed accounts on their ultrastructure have mostly been described in patients suffering from alcoholic liver disease, chronic hepatitis, hepatocellular carcinoma and non-alcoholic fatty liver disease. Interestingly, from this extensive literature survey, it became apparent that giant mitochondria or megamitochondria present themselves with or without highly organised crystal-like intramitochondrial inclusions. The origin, formation and potential role of giant mitochondria remain to-date largely unanswered. Likewise, the biochemical composition of the well-organised crystal-like inclusions and their possible impact on mitochondrial function is unclear. Herein, concepts about the possible mechanism of their formation and three-dimensional architecture will be approached. We will furthermore discuss their importance in diagnostics, including future research outlooks and potential therapeutic interventions to cure liver disease where giant mitochondria are implemented.


Assuntos
Hepatopatias Alcoólicas , Hepatopatia Gordurosa não Alcoólica , Humanos , Dilatação Mitocondrial , Mitocôndrias Hepáticas/patologia , Hepatopatias Alcoólicas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatite Crônica/patologia , Fígado/patologia
2.
Pharmaceutics ; 14(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35056996

RESUMO

Accumulated studies indicate that zero-valent iron (ZVI) nanoparticles demonstrate endogenous cancer-selective cytotoxicity, without any external electric field, lights, or energy, while sparing healthy non-cancerous cells in vitro and in vivo. The anti-cancer activity of ZVI-based nanoparticles was anti-proportional to the oxidative status of the materials, which indicates that the elemental iron is crucial for the observed cancer selectivity. In this thematic article, distinctive endogenous anti-cancer mechanisms of ZVI-related nanomaterials at the cellular and molecular levels are reviewed, including the related gene modulating profile in vitro and in vivo. From a material science perspective, the underlying mechanisms are also analyzed. In summary, ZVI-based nanomaterials demonstrated prominent potential in precision medicine to modulate both programmed cell death of cancer cells, as well as the tumor microenvironment. We believe that this will inspire advanced anti-cancer therapy in the future.

3.
Sci Rep ; 11(1): 3319, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33558594

RESUMO

Giant mitochondria are peculiarly shaped, extremely large mitochondria in hepatic parenchymal cells, the internal structure of which is characterised by atypically arranged cristae, enlarged matrix granules and crystalline inclusions. The presence of giant mitochondria in human tissue biopsies is often linked with cellular adversity, caused by toxins such as alcohol, xenobiotics, anti-cancer drugs, free-radicals, nutritional deficiencies or as a consequence of high fat Western diets. To date, non-alcoholic fatty liver disease is the most prevalent liver disease in lipid dysmetabolism, in which mitochondrial dysfunction plays a crucial role. It is not well understood whether the morphologic characteristics of giant mitochondria are an adaption or caused by such dysfunction. In the present study, we employ a complementary multimodal imaging approach involving array tomography and transmission electron tomography in order to comparatively analyse the structure and morphometric parameters of thousands of normal- and giant mitochondria in four patients diagnosed with non-alcoholic fatty liver disease. In so doing, we reveal functional alterations associated with mitochondrial gigantism and propose a mechanism for their formation based on our ultrastructural findings.


Assuntos
Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Mitocôndrias Hepáticas/ultraestrutura , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
4.
Micron ; 132: 102851, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32092694

RESUMO

Kupffer cells are liver-resident macrophages that play an important role in mediating immune-related functions in mammals and humans. They are well-known for their capacity to phagocytose large amounts of waste complexes, cell debris, microbial particles and even malignant cells. Location, appearance and functional aspects are important features used to identify these characteristic cells of the liver sinusoid. To-date, there is limited information on the occurrence of macrophages in zebrafish liver. Therefore, we aimed to characterise the ultrastructural and functional aspects of liver-associated macrophages in the zebrafish model by taking advantage of the latest advances in zebrafish genetics and multimodal correlative imaging. Herein, we report on the occurrence of macrophages within the zebrafish liver exhibiting conventional ultrastructural features (e.g. presence of pseudopodia, extensive lysosomal apparatus, a phagolysosome and making up ∼3% of the liver volume). Intriguingly, these cells were not located within the sinusoidal vascular bed of hepatic tissue but instead resided between hepatocytes and lacked phagocytic function. While our results demonstrated the presence and structural similarities with liver macrophages from other experimental models, their functional characteristics were distinctly different from Kupffer cells that have been described in rodents and humans. These findings illustrate that the innate immune system of the zebrafish liver has some distinctly different characteristics compared to other animal experimental models. This conclusion underpins our call for future studies in order to have a better understanding of the physiological role of macrophages residing between the parenchymal cells of the zebrafish liver.


Assuntos
Fígado/citologia , Fígado/ultraestrutura , Macrófagos/ultraestrutura , Peixe-Zebra/anatomia & histologia , Animais , Células de Kupffer/ultraestrutura , Contagem de Leucócitos , Microscopia Eletrônica , Fagocitose , Fagossomos , Coloração e Rotulagem
5.
Exp Cell Res ; 386(2): 111727, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31759054

RESUMO

Following mating, leukocytes are recruited to the uterine epithelium where they phagocytose spermatozoa and mediate maternal immune tolerance as well as a mild inflammatory response. In this ultrastructural study we utilised array tomography, a high-resolution volume scanning electron microscopy approach to 3D reconstruct the cellular relationships formed by leukocytes recruited to the luminal uterine epithelium 12 h post-mating in the rat. We report that following mating, neutrophils and macrophages are internalised by the luminal uterine epithelium, with multiple leukocytes internalised via contortion through a small tunnel in the apical membrane into a large membrane-bound vacuole within the cytoplasm of luminal uterine epithelial cells (UECs). Once internalised within the UECs, recruited leukocytes appear to phagocytose material within the membrane-bound vacuole and most ultimately undergo a specialised cell death, including vacuolisation and loss of membrane integrity. As these observations involve ultrastructurally normal leukocytic cells internalised within non-phagocytic epithelial cells, these observations are consistent with the formation of cell-in-cell structures via entosis, rather than phagocytic engulfment by UECs. Although cell-in-cell structures have been reported in normal and pathological conditions elsewhere, the data collected herein represents the first evidence of the formation of cell-in-cell structures within the uterine epithelium as a novel component of the maternal inflammatory response to mating.


Assuntos
Copulação/fisiologia , Entose/imunologia , Células Epiteliais/ultraestrutura , Epitélio/ultraestrutura , Leucócitos/ultraestrutura , Útero/citologia , Animais , Morte Celular , Células Epiteliais/imunologia , Epitélio/imunologia , Feminino , Tolerância Imunológica , Leucócitos/imunologia , Masculino , Fagocitose , Gravidez , Ratos , Ratos Wistar , Espermatozoides/citologia , Espermatozoides/imunologia , Útero/imunologia , Vacúolos/imunologia , Vacúolos/ultraestrutura
6.
Materials (Basel) ; 11(12)2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30563014

RESUMO

Finding a cancer-selective drug that avoids damaging healthy cells and organs is a holy grail in medical research. In our previous studies, gold-coated iron (Fe@Au) nanoparticles showed cancer selective anti-cancer properties in vitro and in vivo but were found to gradually lose that activity with storage or "ageing." To determine the reasons for this diminished anti-cancer activity, we examined Fe@Au nanoparticles at different preparation and storage stages by means of transmission electron microscopy combined with and energy-dispersive X-ray spectroscopy, along with X-ray diffraction analysis and cell viability tests. We found that dried and reconstituted Fe@Au nanoparticles, or Fe@Au nanoparticles within cells, decompose into irregular fragments of γ-F2O3 and agglomerated gold clumps. These changes cause the loss of the particles' anti-cancer effects. However, we identified that the anti-cancer properties of Fe@Au nanoparticles can be well preserved under argon or, better still, liquid nitrogen storage for six months and at least one year, respectively.

7.
Sci Rep ; 8(1): 4685, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549349

RESUMO

Cannabinoids exert dynamic control over many physiological processes including memory formation, cognition and pain perception. In the central nervous system endocannabinoids mediate negative feedback of quantal transmitter release following postsynaptic depolarization. The influence of cannabinoids in the peripheral nervous system is less clear and might have broad implications for the therapeutic application of cannabinoids. We report a novel cannabinoid effect upon the mouse neuromuscular synapse: acutely increasing synaptic vesicle volume and raising the quantal amplitudes. In a mouse model of myasthenia gravis the cannabinoid receptor agonist WIN 55,212 reversed fatiguing failure of neuromuscular transmission, suggesting future therapeutic potential. Our data suggest an endogenous pathway by which cannabinoids might help to regulate transmitter release at the neuromuscular junction.


Assuntos
Endocanabinoides/administração & dosagem , Miastenia Gravis/tratamento farmacológico , Junção Neuromuscular/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Potenciais Evocados/efeitos dos fármacos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Morfolinas/farmacologia , Miastenia Gravis/etiologia , Miastenia Gravis/metabolismo , Naftalenos/farmacologia , Junção Neuromuscular/efeitos dos fármacos
8.
Methods Cell Biol ; 140: 215-244, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28528635

RESUMO

In this chapter the authors report on an automated hardware and software solution enabling swift correlative sample array mapping of fluorescently stained molecules within cells and tissues across length scales. Samples are first observed utilizing wide-field optical and fluorescence microscopy, followed by scanning electron microscopy, using calibration points on a dedicated sample-relocation holder. We investigated HeLa cells in vitro, fluorescently labeled for monosialoganglioside one (GM-1), across both imaging platforms within tens of minutes of initial sample preparation. This resulted in a high-throughput and high spatially resolved correlative fluorescence and electron microscopy analysis and allowed us to collect complementary nanoscopic information on the molecular and structural composition of two differently distinct HeLa cell populations expressing different levels of GM-1. Furthermore, using the small zebrafish animal model Danio rerio, we showed the versatility and relocation accuracy of the sample-relocation holder to locate fluo-tagged macromolecular complexes within large volumes using long ribbons of serial tissue sections. The subsequent electron microscopy imaging of the tissue arrays of interest enabled the generation of correlated information on the fine distribution of albumin within hepatic and kidney tissue. Our approach underpins the merits that an automated sample-relocation holder solution brings in support of results-driven research, where relevant biological questions can be answered, and high-throughput data can be generated in a rigorous statistical manner.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Microscopia de Fluorescência/métodos , Animais , Células Endoteliais/ultraestrutura , Células HeLa , Humanos , Larva/ultraestrutura , Fígado/citologia , Peixe-Zebra/metabolismo
9.
Sci Rep ; 6: 23884, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27029904

RESUMO

Autophagy is emerging as an important pathway in many diseases including diabetic nephropathy. It is acknowledged that oxidative stress plays a critical role in autophagy dysfunction and diabetic nephropathy, and KCa3.1 blockade ameliorates diabetic renal fibrosis through inhibiting TGF-ß1 signaling pathway. To identify the role of KCa3.1 in dysfunctional tubular autophagy in diabetic nephropathy, human proximal tubular cells (HK2) transfected with scrambled or KCa3.1 siRNAs were exposed to TGF-ß1 for 48 h, then autophagosome formation, the autophagy marker LC3, signaling molecules PI3K, Akt and mTOR, and oxidative stress marker nitrotyrosine were examined respectively. In vivo, LC3, nitrotyrosine and phosphorylated mTOR were examined in kidneys of diabetic KCa3.1+/+ and KCa3.1-/- mice. The results demonstrated that TGF-ß1 increased the formation of autophagic vacuoles, LC3 expression, and phosphorylation of PI3K, Akt and mTOR in scrambled siRNA transfected HK2 cells compared to control cells, which was reversed in KCa3.1 siRNA transfected HK2 cells. In vivo, expression of LC3 and nitrotyrosine, and phosphorylation of mTOR were significantly increased in kidneys of diabetic KCa3.1+/+ mice compared to non-diabetic mice, which were attenuated in kidneys of diabetic KCa3.1-/- mice. These results suggest that KCa3.1 activation contributes to dysfunctional tubular autophagy in diabetic nephropathy through PI3K/Akt/mTOR signaling pathways.


Assuntos
Diabetes Mellitus Experimental/genética , Nefropatias Diabéticas/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Serina-Treonina Quinases TOR/genética , Animais , Autofagia/genética , Linhagem Celular Transformada , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação da Expressão Gênica , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Estreptozocina , Serina-Treonina Quinases TOR/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
11.
Biomater Sci ; 3(2): 298-307, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26218120

RESUMO

Herein we report an approach to assess in vitro cellular responses to the dissolution or degradation products from Fmoc-diphenylalanine (Fmoc-FF) self-assembled hydrogels. Three cell lines were used in these studies and two-way ANOVA was used to assess (i) the age of gel dissolution and degradation products and (ii) exposure time on cell fate and state, using viability assays in conjunction with time-lapse fluorescence and high-resolution scanning electron microscopy investigation. The studies show that leaching time but not the exposure time affects the overall cell viability. The cytotoxic effect was only observed once the gel is completely dissolved. Further analysis revealed that the principal mechanism of cell death is necrosis. In addition, the effect of chemotherapeutics (5-fluorouracil and paclitaxel) released from the Fmoc-FF gel (with addition before and after gelation) on colorectal cancer cells were investigated using this methodology, demonstrating enhanced activity of these drugs compared to bulk control. This enhanced activity, however, appears to be a combination of the apoptosis caused by the cancer drugs and necrosis caused by gel dissolution and degradation products. Given that in vivo studies by others on Fmoc-peptides that this material is not harmful to animals, our work highlights that conventional in vitro cellular assays may yield conflicting messages when used for the evaluation of cytotoxicity and drug release from self-assembled gels such as Fmoc-FF and that better in vitro models, (e.g. 3D cell culture systems) need to be developed to evaluate these materials for biomedical applications.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/química , Dipeptídeos/química , Fluorenos/química , Fluoruracila/química , Hidrogéis/química , Paclitaxel/química , Peptídeos/química , Fenilalanina/análogos & derivados , Animais , Sobrevivência Celular/fisiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Fluoruracila/metabolismo , Humanos , Estrutura Molecular , Paclitaxel/metabolismo , Peptídeos/metabolismo , Fenilalanina/química , Fenilalanina/metabolismo , Solubilidade
12.
Methods Cell Biol ; 124: 129-49, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25287840

RESUMO

In this chapter, the authors outline in full detail, an uncomplicated approach that enables the combination of wide-field fluorescence super-resolution microscopy with electron tomography, thereby providing an approach that affords the best possible confidence in the structures investigated. The methodical steps to obtain these high-throughput correlative nanoscopic arrays will be visually explored and outlined in detail. The authors will demonstrate the feasibility of the method on cultured Caco-2 colorectal cancer cells that are labeled for filamentous actin. The presented images, morphometric data, and generated models illustrate the strengths of our correlative approach for future advanced structural-biology-oriented questions. Correlative nanoscopy applications can be readily found in which there is a need to reveal biomolecular information at unprecedented resolution on subcellular behavior in various biological and pathobiological processes.


Assuntos
Imageamento Tridimensional/métodos , Citoesqueleto de Actina/ultraestrutura , Células CACO-2 , Tomografia com Microscopia Eletrônica/métodos , Humanos , Microscopia de Fluorescência/métodos
13.
Micron ; 67: 20-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25004848

RESUMO

Herein, we present a comparative analysis of a variety of chemical and physical fixation protocols for the specific visualisation of the membrane-bound vesicles (MBVs) in the Caco-2 colorectal cancer (CRC) cell line. In so doing, we validated the applicability of specific specimen preparation protocols for the preservation and contrasting of membrane-associated vesicles. Next, by employing the best respective chemical (GOT) and physical (SHPF) fixation methods for the application of transmission electron tomography and modelling we were able to characterise MBVs in three-dimensions and at the nanometer scale. In the second part of this study, we employ a correlative light and electron microscopy (CLEM) approach in order to determine which vesicular compartments are implicated in the uptake of FITC-BSA as a model protein drug. In so doing, we provide a solid foundation for future studies investigating chemotherapeutic drug uptake, transport and fate in cancer cell lines.


Assuntos
Células CACO-2/ultraestrutura , Vesículas Citoplasmáticas/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Microscopia/métodos , Fixação de Tecidos/métodos , Albuminas/metabolismo , Albuminas/ultraestrutura , Clatrina/metabolismo , Clatrina/ultraestrutura , Vesículas Revestidas/ultraestrutura , Criopreservação/métodos , Fixadores , Glutaral , Humanos , Imageamento Tridimensional/métodos , Tetróxido de Ósmio , Taninos
15.
Int J Nanomedicine ; 8: 3321-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24039416

RESUMO

Previously, iron core-gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells' relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the "active" component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core-shell nanoparticles are essential for the anticancer properties observed in CRC cells.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Ouro/uso terapêutico , Ferro/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/ultraestrutura , Apoptose/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células HT29 , Humanos , Tamanho da Partícula
16.
PLoS Pathog ; 9(3): e1003239, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555252

RESUMO

Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF) virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF) infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF) extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5(P189S) mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.


Assuntos
Citoesqueleto de Actina/metabolismo , Vaccinia virus/fisiologia , Vacínia/transmissão , Proteínas do Envelope Viral/metabolismo , Proteínas Estruturais Virais/metabolismo , Liberação de Vírus/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Membrana Celular/ultraestrutura , Membrana Celular/virologia , Chlorocebus aethiops , Ensaio Cometa , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Fibroblastos/virologia , Interações Hospedeiro-Patógeno , Camundongos , Microscopia Eletrônica de Transmissão , Células NIH 3T3 , Proteínas Oncogênicas/deficiência , Proteínas Oncogênicas/genética , Vaccinia virus/ultraestrutura , Células Vero , Proteínas do Envelope Viral/ultraestrutura , Proteínas Estruturais Virais/ultraestrutura
17.
Biopolymers ; 99(1): 84-94, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097233

RESUMO

Class I fungal hydrophobins are small surface-active proteins that self-assemble to form amphipathic monolayers composed of amyloid-like rodlets. The monolayers are extremely robust and can adsorb onto both hydrophobic and hydrophilic surfaces to reverse their wettability. This adherence is particularly strong for hydrophobic materials. In this report, we show that the class I hydrophobins EAS and HYD3 can self-assemble to form a single-molecule thick coating on a range of nanomaterials, including single-walled carbon nanotubes (SWCNTs), graphene sheets, highly oriented pyrolytic graphite, and mica. Moreover, coating by class I hydrophobin results in a stable, dispersed preparation of SWCNTs in aqueous solutions. No cytotoxicity is detected when hydrophobin or hydrophobin-coated SWCNTs are incubated with Caco-2 cells in vitro. In addition, we are able to specifically introduce covalently linked chemical moieties to the hydrophilic side of the rodlet monolayer. Hence, class I hydrophobins provide a simple and effective strategy for controlling the surfaces of a range of materials at a molecular level and exhibit strong potential for biomedical applications.


Assuntos
Alérgenos/química , Antígenos de Fungos/química , Carbono/química , Proteínas Fúngicas/química , Nanopartículas/química , Células CACO-2 , Linhagem Celular Tumoral , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
18.
J Toxicol Sci ; 37(2): 447-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22467036

RESUMO

Liver toxicity is a side effect observed with some herbal treatments, including Piper methysticum. The possible mechanisms responsible include inflammation subsequent to activation of liver macrophages and oxidative damage. Hepatotoxicity of the pharmacologically active component of Piper methysticum (kavalactones) was tested in isolated, perfused livers from rats which were pretreated with the macrophage intoxicant gadolinium chloride. Perfusions without kavalactones in gadolinium chloride pretreated and untreated livers were included as negative controls. Serial liver lobe biopsies were collected to measure temporal changes in available (reduced) hepatic glutathione. There were no statistically significant changes in reduced glutathione over the course of perfusion in any experimental group. Liver damage was observed using electron microscopy. Hepatic sinusoids displayed extensive damage to the endothelium in kavalactone-perfused, rat livers. This damage was significantly reduced by pre-treatment with gadolinium chloride. Hence liver macrophages may be a factor in liver injury induced by Piper methysticum. Characterisation and modulation of the liver macrophage response may enable the development of strategies to avoid these hepatic side effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Kava , Lactonas/toxicidade , Macrófagos/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Gadolínio/farmacologia , Glutationa/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
19.
Comp Hepatol ; 10: 7, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21819626

RESUMO

BACKGROUND: The isolated perfused rat liver (IPRL) is a technique used in a wide range of liver studies. Typically livers are assessed at treatment end point. Techniques have been described to biopsy liver in the live rat and post-hepatectomy. RESULTS: This paper describes a technique for obtaining two full and one partial lobe biopsies from the liver in situ during an IPRL experiment. Our approach of retaining the liver in situ assists in minimising liver capsule damage, and consequent leakage of perfusate, maintains the normal anatomical position of the liver during perfusion and helps to keep the liver warm and moist. Histological results from sequential lobe biopsies in control perfusions show that cytoplasmic vacuolation of hepatocytes is a sign of liver deterioration, and when it occurs it commences as a diffuse pattern which tends to develop a circumscribed, centrilobular pattern as perfusion progresses. CONCLUSIONS: Liver lobe biopsies obtained using this method can be used to study temporal effects of drug treatments and are suitable for light and electron microscopy, and biochemical analyses.

20.
Biomaterials ; 32(20): 4565-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21458061

RESUMO

Nanoparticles with an iron core and gold shell (denoted "Fe@AuÓ") have been reported to limit cancer-cell proliferation and therefore have been proposed as a potential anti-cancer agent. However, the underlying mechanisms are still unknown. In this study, we used flow cytometry, confocal fluorescence microscopy, and transmission electron microscopy to analyse the morphological and functional alterations of mitochondria in cancerous cells and healthy cells when treated with Fe@Au. It was found that Fe@Au caused an irreversible membrane-potential loss in the mitochondria of cancer cells, but only a transitory decrease in membrane potential in healthy control cells. Production of reactive oxygen species (ROS) was observed; however, additions of common ROS scavengers were unable to protect cancerous cells from the Fe@Au-induced cytotoxicity. Furthermore, iron elements, before oxidation, triggered mitochondria-mediated autophagy was shown to be the key factor responsible for the differential cytotoxicity observed between cancerous and healthy cells.


Assuntos
Autofagia/fisiologia , Ouro , Ferro , Nanopartículas Metálicas , Mitocôndrias/metabolismo , Neoplasias Bucais/tratamento farmacológico , Animais , Células Cultivadas , Ouro/química , Ouro/farmacologia , Ouro/uso terapêutico , Humanos , Ferro/química , Ferro/farmacologia , Ferro/uso terapêutico , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Neoplasias Bucais/patologia , Consumo de Oxigênio , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA