Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Med Chem ; 29(14): 2530-2564, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34313197

RESUMO

BACKGROUND: COVID-19 is still causing long-term health consequences, mass deaths, and collapsing healthcare systems around the world. There are no efficient drugs for its treatment. However, previous studies revealed that SARS-CoV-2 and SARS-CoV have 96% and 86.5% similarities in cysteine proteases (3CLpro) and papain-like protease (PLpro) sequences, respectively. This resemblance could be important in the search for drug candidates with antiviral effects against SARS-CoV-2. OBJECTIVE: This paper is a compilation of natural products that inhibit SARS-CoV 3CLpro and PLpro and, concomitantly, reduce inflammation and/or modulate the immune system as a perspective strategy for COVID-19 drug discovery. It also presents in silico studies performed on these selected natural products using SARS-CoV-2 3CLpro and PLpro as targets to propose a list of hit compounds. METHODS: The plant metabolites were selected in the literature based on their biological activities on SARS-CoV proteins, inflammatory mediators, and immune response. The consensus docking analysis was performed using four different packages. RESULTS: Seventy-nine compounds reported in the literature with inhibitory effects on SARS-CoV proteins were reported as anti-inflammatory agents. Fourteen of them showed immunomodulatory effects in previous studies. Five and six of these compounds showed significant in silico consensus as drug candidates that can inhibit PLpro and 3CLpro, respectively. Our findings corroborated recent results reported on anti-SARS-CoV-2 in the literature. CONCLUSION: This study revealed that amentoflavone, rubranoside B, savinin, psoralidin, hirsutenone, and papyriflavonol A are good drug candidates for the search of antibiotics against COVID-19.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Humanos , Imunidade , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , SARS-CoV-2
2.
Free Radic Res ; 55(11-12): 1062-1079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34895012

RESUMO

Ferroptosis, an iron-dependent form of cell death, has critical roles in diverse pathologies. Data on the temporal events mediating the prevention of ferroptosis are lacking. Focused on temporal aspects of cytotoxicity/protection, we investigated the effects of classic (Fer-1) and novel [2,6-di-tert-butyl-4-(2-thienylthio)phenol (C1) and 2,6-di-tert-butyl-4-(2-thienylselano)phenol (C2)] anti-ferroptotic agents against RSL3-, BSO- or glutamate-induced ferroptosis in cultured HT22 neuronal cell line, comparing their effects with those of the antioxidants trolox, ebselen and probucol. Glutamate (5 mM), BSO (25 µM) and RSL3 (50 nM) decreased approximately 40% of cell viability at 24 h. At these concentrations, none of these agents changed cell viability at 6 h after treatments; RSL3 increased lipoperoxidation from 6 h, although BSO and glutamate only did so at 12 h after treatments. At similar conditions, BSO and glutamate (but not RSL3) decreased GSH levels at 6 h after treatments. Fer-1, C1 and C2 exhibited similar protective effects against glutamate-, BSO- and RSL3-cytotoxicity, but this protection was limited when the protective agents were delivered to cells at time-points characterized by increased lipoperoxidation (but not glutathione depletion). Compared to Fer-1, C1 and C2, the anti-ferroptotic effects of trolox, ebselen and probucol were minor. Cytoprotective effects were not associated with direct antioxidant efficacies. These results indicate that the temporal window is central in affecting the efficacies of anti-ferroptotic drugs in acute scenarios; ferroptosis prevention is improbable when significant rates of lipoperoxidation were already achieved. C1 and C2 displayed remarkable cytoprotective effects, representing a promising new class of compounds to treat ferroptosis-related pathologies.


Assuntos
Ferroptose , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Morte Celular , Ácido Glutâmico/farmacologia , Glutationa/metabolismo , Peroxidação de Lipídeos , Fenol/farmacologia , Probucol/farmacologia
3.
Neurochem Res ; 46(1): 120-130, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32285377

RESUMO

Most pharmacological studies concerning the beneficial effects of organoselenium compounds have focused on their ability to mimic glutathione peroxidase (GPx). However, mechanisms other than GPx-like activity might be involved on their biological effects. This study was aimed to investigate and compare the protective effects of two well known [(PhSe)2 and PhSeZnCl] and two newly developed (MRK Picolyl and MRK Ester) organoselenium compounds against oxidative challenge in cultured neuronal HT22 cells. The thiol peroxidase and oxidase activities were performed using the glutathione reductase (GR)-coupled assay. In order to evaluate protective effects of the organoselenium compounds against oxidative challenge in neuronal HT22 cells, experiments based on glutamate-induced oxytosis and SIN-1-mediated peroxynitrite generation were performed. The thiol peroxidase activities of the studied organoselenium compounds were smaller than bovine erythrocytes GPx enzyme. Besides, (PhSe)2 and PhSeZnCl showed higher thiol peroxidase and lower thiol oxidase activities compared to the new compounds. MRK Picolyl and MRK Ester, which showed lower thiol peroxidase activity, showed higher thiol oxidase activity. Both pre- or co-treatment with (PhSe)2, PhSeZnCl, MRK Picolyl and MRK Ester protected HT22 cells against glutamate-induced cytotoxicity. (PhSe)2 and MRK Picolyl significantly prevented peroxinitrite-induced dihydrorhodamine oxidation, but this effect was observed only when HT22 were pre-treated with these compounds. The treatment with (PhSe)2 increased the protein expression of antioxidant defences (Prx3, CAT and GCLC) in HT22 cells. Taking together, our results suggest that the biological effects elicited by these compounds are not directly related to their GPx-mimetic and thiol oxidase activities, but might be linked to the up-regulation of endogenous antioxidant defences trough their thiol-modifier effects.


Assuntos
Antioxidantes/farmacologia , Neurônios/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Catalase/metabolismo , Bovinos , Linhagem Celular , Glutamato-Cisteína Ligase/metabolismo , Glutationa Peroxidase/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos
4.
Artigo em Inglês | LILACS | ID: biblio-1349461

RESUMO

Objective: the development of new drugs against Methicillin-resistant Staphylococcus aureus is a priority to the World Health Organization. So, the objective of this study was to evaluate the antibacterial activity and toxicity of 5-bromo-3-((4-methoxyphenyl) sulfenyl)-1H-indole (3b) against MRSA. Methods: minimum inhibitory concentration (MIC) of 3b was determined against S. aureus ATCC 29213 and 43 clinical isolates. The time-kill assay was performed for 9 isolates. Analysis of variance followed by the post hoc Bonferroni test was used for the statistical tests. Results and conclusions: the MIC50 and MIC90 of 3b were 4 µg.mL-1 and 16 µg.mL-1 respectively. In time-kill assay, the 3b showed bactericidal activity to all evaluated isolates at concentrations of 1xMIC and 2xMIC and the re-growth effect was not observed. About the toxicity tests, 3b has not presented cytotoxicity, mutagenicity, or allergenicity. 3b had particularly good activity against MRSA demonstrating high potential for the development of new antimicrobials products.


Objetivo: o desenvolvimento de novos antimicrobianos contra Staphylococcus aureus resistentes à meticilina (MRSA) é uma prioridade para a Organização Mundial da Saúde. Então, o objetivo desse estudo foi avaliar a atividade antibacteriana e a toxicidade do 5-bromo-3-((4-metoxifenil) sulfenil)-1H-indol (3b) contra MRSA. Métodos: a concentração inibitória minima de 3b foi determinada contra S. aureus ATCC 29213 e 43 isolados clínicos. O ensaio de curva de morte foi realizado para nove isolados. Análise de variância seguida pelo teste post hoc Bonferroni foi usada para testes estatísticos. Resultados e conclusões: a MIC50 e MIC90 do 3b foi 4 µg.mL-1 e 16 µg.mL-1, respectivamente. No ensaio de curva de morte, o 3b demonstrou atividade bactericida contra todos os isolados avaliados na concentração de 1xMIC e 2xMIC e o recrescimento não foi observado. Em relação aos testes de toxicidade, 3b não apresentou citotoxicidade, mutagenicidade ou alergenicidade. 3b apresentou atividade particularmente interessante contra MRSA, demonstrando alto potencial para o desenvolvimento de novos produtos antimicrobianos.


Assuntos
Staphylococcus aureus , Staphylococcus aureus Resistente à Meticilina , Resistência a Meticilina , Anti-Infecciosos , Antibacterianos
5.
Mol Neurobiol ; 57(8): 3273-3290, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32514861

RESUMO

Probucol, a hypocholesterolemic compound, is neuroprotective in several models of neurodegenerative diseases but has serious adverse effects in vivo. We now describe the design and synthesis of two new probucol analogues that protect against glutamate-induced oxidative cell death, also known as ferroptosis, in cultured mouse hippocampal (HT22) cells and in primary cortical neurons, while probucol did not show any protective effect. Treatment with both compounds did not affect glutathione depletion but still significantly decreased glutamate-induced production of oxidants, mitochondrial superoxide generation, and mitochondrial hyperpolarization in HT22 cells. Both compounds increase glutathione peroxidase (GPx) 1 levels and GPx activity, also exhibiting protection against RSL3, a GPx4 inactivator. These two compounds are therefore potent activators of GPx activity making further studies of their neuroprotective activity in vivo worthwhile.


Assuntos
Ferroptose/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Probucol/farmacologia , Animais , Antioxidantes/metabolismo , Morte Celular/efeitos dos fármacos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Camundongos , Mitocôndrias/metabolismo , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
6.
Biochem Biophys Res Commun ; 503(3): 1291-1297, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30017191

RESUMO

A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 µM and 12.5 µM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Clivagem do DNA/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Estrutura Molecular , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
7.
Eur J Med Chem ; 155: 503-515, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29908443

RESUMO

Novel pyrimidinic selenoureas were synthesized and evaluated against tumour and normal cell lines. Among these, the compound named 3j initially showed relevant cytotoxicity and selectivity for tumour cells. Three analogues of 3j were designed and synthesized keeping in view the structural requirements of this compound. Almost all the tested compounds displayed considerable cytotoxicity. However, 8a, one of the 3j analogues, was shown to be highly selective and cytotoxic, especially for breast carcinoma cells (MCF-7) (IC50 = 3.9 µM). Furthermore, 8a caused DNA damage, inhibited cell proliferation, was able to arrest cell cycle in S phase, and induced cell death by apoptosis in human breast carcinoma cells. Moreover, predictions of pharmacokinetic properties showed that 8a may present good absorption and permeation characteristics for oral administration. Overall, the current study established 8a as a potential drug prototype to be employed as a DNA interactive cytotoxic agent for the treatment of breast cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Compostos Organosselênicos/farmacologia , Pirimidinas/farmacologia , Ureia/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Células MCF-7 , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ureia/síntese química , Ureia/química , Ureia/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA