Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 209: 112914, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268145

RESUMO

Previous investigation of the potent antileishmanial properties of antitubercular 7-substituted 2-nitroimidazo[2,1-b][1,3]oxazines with biaryl side chains led to our development of a new clinical candidate for visceral leishmaniasis (DNDI-0690). Within a collaborative backup program, a racemic monoaryl lead (3) possessing comparable activity in mice but a greater hERG liability formed the starting point for our pursuit of efficacious second generation analogues having good solubility and safety. Asymmetric synthesis and appraisal of its enantiomers first established that chiral preferences for in vivo efficacy were species dependent and that neither form afforded a reduced hERG risk. However, in line with our findings in a structurally related series, less lipophilic heteroaryl ethers provided significant solubility enhancements (up to 16-fold) and concomitantly attenuated hERG inhibition. One promising pyridine derivative (49) displayed 100% oral bioavailability in mice and delivered a 96% parasite burden reduction when dosed at 50 mg/kg in a Leishmania donovani mouse model of visceral leishmaniasis.


Assuntos
Antiprotozoários/síntese química , Éter/síntese química , Hidrocarbonetos Aromáticos/química , Leishmaniose Visceral/tratamento farmacológico , Oxazinas/química , Animais , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacocinética , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éter/administração & dosagem , Éter/farmacocinética , Feminino , Humanos , Leishmania donovani/efeitos dos fármacos , Masculino , Camundongos , Testes de Sensibilidade Parasitária , Piridinas/química , Solubilidade , Relação Estrutura-Atividade
2.
Int J Parasitol Drugs Drug Resist ; 11: 129-138, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30922847

RESUMO

OBJECTIVES: Drugs for Neglected Diseases initiative (DNDi) has identified three chemical lead series, the nitroimidazoles, benzoxaboroles and aminopyrazoles, as innovative treatments for visceral leishmaniasis. The leads discovered using phenotypic screening, were optimised following disease- and compound-specific criteria. Several leads of each series were progressed and preclinical drug candidates have been nominated. Here we evaluate the efficacy of the lead compounds of each of these three chemical classes in in vitro and in vivo models of cutaneous leishmaniasis. METHODS: The in vitro activity of fifty-five compounds was evaluated against the intracellular amastigotes of L. major, L. aethiopica, L. amazonensis, L. panamensis, L. mexicana and L. tropica. The drugs demonstrating potent activity (EC50 < 5 µM) against at least 4 of 6 species were subsequently evaluated in vivo in different L. major - BALB/c mouse models using a 5 or 10-day treatment with either the oral or topical formulations. Efficacy was expressed as lesion size (measured daily using callipers), parasite load (by quantitative PCR - DNA) and bioluminescence signal reduction relative to the untreated controls. RESULTS: The selected drug compounds (3 nitroimidazoles, 1 benzoxaborole and 3 aminopyrazoles) showed consistent and potent activity across a range of Leishmania species that are known to cause CL with EC50 values ranging from 0.29 to 18.3 µM. In all cases, this potent in vitro antileishmanial activity translated into high levels of efficacy with a linear dose-response against murine CL. When administered at 50 mg/kg/day, DNDI-0690 (nitroimidazole), DNDI-1047 (aminopyrazole) and DNDI-6148 (benzoxaborole) all resulted in a significant lesion size reduction (no visible nodule) and an approximate 2-log-fold reduction of the parasite load as measured by qPCR compared to the untreated control. CONCLUSIONS: The lead compounds DNDI-0690, DNDI-1047 and DNDI-6148 showed excellent activity across a range of Leishmania species in vitro and against L. major in mice. These compounds offer novel potential drugs for the treatment of CL.


Assuntos
Antiprotozoários/uso terapêutico , Compostos de Boro/uso terapêutico , Leishmaniose Cutânea/tratamento farmacológico , Nitroimidazóis/uso terapêutico , Pirazóis/uso terapêutico , Animais , Antiprotozoários/química , Compostos de Boro/química , Feminino , Concentração Inibidora 50 , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Nitroimidazóis/química , Carga Parasitária , Pirazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA