Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Oncol ; 12: 1068443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439493

RESUMO

Ovarian cancer is one of the most lethal gynecological malignancies. Recurrence or acquired chemoresistance is the leading cause of ovarian cancer therapy failure. Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1), commonly known as P-glycoprotein, correlates closely with multidrug resistance (MDR). However, the mechanism underlying aberrant ABCB1 expression remains unknown. Using a quantitative high-throughput combinational screen, we identified that terfenadine restored doxorubicin sensitivity in an MDR ovarian cancer cell line. In addition, RNA-seq data revealed that the Ca2+-mediated signaling pathway in the MDR cells was abnormally regulated. Moreover, our research demonstrated that terfenadine directly bound to CAMKIID to prevent its autophosphorylation and inhibit the activation of the cAMP-responsive element-binding protein 1 (CREB1)-mediated pathway. Direct inhibition of CAMKII or CREB1 had the same phenotypic effects as terfenadine in the combined treatment, including lower expression of ABCB1 and baculoviral IAP repeat-containing 5 (BIRC5, also known as survivin) and increased doxorubicin-induced apoptosis. In this study, we demonstrate that aberrant regulation of the Ca2+-mediated CAMKIID/CREB1 pathway contributes to ABCB1 over-expression and MDR creation and that CAMKIID and CREB1 are attractive targets for restoring doxorubicin efficacy in ABCB1-mediated MDR ovarian cancer.

2.
Cell Death Dis ; 12(4): 341, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795649

RESUMO

The JAK2/STAT pathway is hyperactivated in many cancers, and such hyperactivation is associated with a poor clinical prognosis and drug resistance. The mechanism regulating JAK2 activity is complex. Although translocation of JAK2 between nucleus and cytoplasm is an important regulatory mechanism, how JAK2 translocation is regulated and what is the physiological function of this translocation remain largely unknown. Here, we found that protease SENP1 directly interacts with and deSUMOylates JAK2, and the deSUMOylation of JAK2 leads to its accumulation at cytoplasm, where JAK2 is activated. Significantly, this novel SENP1/JAK2 axis is activated in platinum-resistant ovarian cancer in a manner dependent on a transcription factor RUNX2 and activated RUNX2/SENP1/JAK2 is critical for platinum-resistance in ovarian cancer. To explore the application of anti-SENP1/JAK2 for treatment of platinum-resistant ovarian cancer, we found SENP1 deficiency or treatment by SENP1 inhibitor Momordin Ic significantly overcomes platinum-resistance of ovarian cancer. Thus, this study not only identifies a novel mechanism regulating JAK2 activity, but also provides with a potential approach to treat platinum-resistant ovarian cancer by targeting SENP1/JAK2 pathway.


Assuntos
Cisteína Endopeptidases/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Janus Quinase 2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Platina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
SLAS Discov ; 25(1): 9-20, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31498718

RESUMO

Cell-based phenotypic screening is a commonly used approach to discover biological pathways, novel drug targets, chemical probes, and high-quality hit-to-lead molecules. Many hits identified from high-throughput screening campaigns are ruled out through a series of follow-up potency, selectivity/specificity, and cytotoxicity assays. Prioritization of molecules with little or no cytotoxicity for downstream evaluation can influence the future direction of projects, so cytotoxicity profiling of screening libraries at an early stage is essential for increasing the likelihood of candidate success. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 compounds in the National Institutes of Health, National Center for Advancing Translational Sciences annotated libraries and more than 100,000 compounds in a diversity library against four normal cell lines (HEK 293, NIH 3T3, CRL-7250, and HaCat) and one cancer cell line (KB 3-1, a HeLa subline). This large-scale library profiling was analyzed for overall screening outcomes, hit rates, pan-activity, and selectivity. For the annotated library, we also examined the primary targets and mechanistic pathways regularly associated with cell death. To our knowledge, this is the first study to use high-throughput screening to profile a large screening collection (>100,000 compounds) for cytotoxicity in both normal and cancer cell lines. The results generated here constitute a valuable resource for the scientific community and provide insight into the extent of cytotoxic compounds in screening libraries, allowing for the identification and avoidance of compounds with cytotoxicity during high-throughput screening campaigns.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas , Antineoplásicos/química , Técnicas de Cultura de Células , Linhagem Celular , Biologia Computacional/métodos , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Expressão Gênica , Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Humanos
4.
Cancer Lett ; 428: 104-116, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29704517

RESUMO

The acquisition of resistance is a major obstacle to the clinical use of platinum drugs for ovarian cancer treatment. Increase of DNA damage response is one of major mechanisms contributing to platinum-resistance. However, how DNA damage response is regulated in platinum-resistant ovarian cancer cells remains unclear. Using quantitative high throughput combinational screen (qHTCS) and RNA-sequencing (RNA-seq), we show that dual oxidase maturation factor 1 (DUOXA1) is overexpressed in platinum-resistant ovarian cancer cells, resulting in over production of reactive oxygen species (ROS). Elevated ROS level sustains the activation of ATR-Chk1 pathway, leading to resistance to cisplatin in ovarian cancer cells. Moreover, using qHTCS we identified two Chk1 inhibitors (PF-477736 and AZD7762) that re-sensitize resistant cells to cisplatin. Blocking this novel pathway by inhibiting ROS, DUOXA1, ATR or Chk1 effectively overcomes cisplatin resistance in vitro and in vivo. Significantly, the clinical studies also confirm the activation of ATR and DOUXA1 in ovarian cancer patients, and elevated DOUXA1 or ATR-Chk1 pathway correlates with poor prognosis. Taken together, our findings not only reveal a novel mechanism regulating cisplatin resistance, but also provide multiple combinational strategies to overcome platinum-resistance in ovarian cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Benzodiazepinonas/farmacologia , Benzodiazepinonas/uso terapêutico , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Quinase 1 do Ponto de Checagem/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Feminino , Humanos , Estimativa de Kaplan-Meier , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncogene ; 37(29): 3981-3997, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29662190

RESUMO

Antineoplastic platinum agents are used in first-line treatment of ovarian cancer, but treatment failure frequently results from platinum drug resistance. Emerging observations suggest a role of reactive oxygen species (ROS) in the resistance of cancer drugs including platinum drugs. However, the molecular link between ROS and cellular survival pathway is poorly understood. Using quantitative high-throughput combinational screen (qHTCS) and genomic sequencing, we show that in platinum-resistant ovarian cancer elevated ROS levels sustain high level of IL-11 by stimulating FRA1-mediated IL-11 expression and increased IL-11 causes resistance to platinum drugs by constitutively activating JAK2-STAT5 via an autocrine mechanism. Inhibition of JAK2 by LY2784544 or IL-11 by anti-IL-11 antibody overcomes the platinum resistance in vitro or in vivo. Significantly, clinic studies also confirm the activated IL-11-JAK2 pathway in platinum-resistant ovarian cancer patients, which highly correlates with poor prognosis. These findings not only identify a novel ROS-IL-11-JAK2-mediated platinum resistance mechanism but also provide a new strategy for using LY2784544- or IL-11-mediated immunotherapy to treat platinum-resistant ovarian cancer.


Assuntos
Comunicação Autócrina/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Interleucina-11/metabolismo , Janus Quinase 2/metabolismo , Platina/farmacologia , Comunicação Autócrina/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Imidazóis/farmacologia , Imunoterapia/métodos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Pirazóis/farmacologia , Piridazinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Chem Res Toxicol ; 31(2): 127-136, 2018 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-29156121

RESUMO

A chemical genomics "Toxmatrix" method was developed to elucidate mechanisms of cytotoxicity using neuronal models. Quantitative high-throughput screening (qHTS) was applied to systematically screen each toxicant against a panel of 70 modulators, drugs or chemicals that act on a known target, to identify interactions that either protect or sensitize cells to each toxicant. Thirty-two toxicants were tested at 10 concentrations for cytotoxicity to SH-SY5Y human neuroblastoma cells, with results fitted to the Hill equation to determine an IC50 for each toxicant. Thirty-three toxicant:modulator interactions were identified in SH-SY5Y cells for 14 toxicants, as modulators that shifted toxicant IC50 values lower or higher. The target of each modulator that sensitizes cells or protects cells from a toxicant suggests a mode of toxicant action or cellular adaptation. In secondary screening, we tested modulator-toxicant pairs identified from the SH-SY5Y primary screening for interactions in three differentiated neuronal human cell lines: dSH-SY5Y, conditionally immortalized dopaminergic neurons (LUHMES), and neural stem cells. Twenty toxicant-modulator pairs showed pronounced interactions in one or several differentiated cell models. Additional testing confirmed that several modulators acted through their primary targets. For example, several chelators protected differentiated LUHMES neurons from four toxicants by chelation of divalent cations and buthionine sulphoximine sensitized cells to 6-hydroxydopamine and 4-(methylamino)phenol hemisulfate by blocking glutathione synthesis. Such modulators that interact with multiple neurotoxicants suggest these may be vulnerable toxicity pathways in neurons. Thus, the Toxmatrix method is a systematic high-throughput approach that can identify mechanisms of toxicity and cellular adaptation.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Genômica , Ensaios de Triagem em Larga Escala , Células-Tronco Neurais/efeitos dos fármacos , Neurotoxinas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Neurônios Dopaminérgicos/metabolismo , Humanos , Células-Tronco Neurais/metabolismo
7.
Pharmacol Rev ; 69(4): 479-496, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28931623

RESUMO

High-throughput screening (HTS) of small-molecule libraries accelerates the discovery of chemical leads to serve as starting points for probe or therapeutic development. With this approach, thousands of unique small molecules, representing a diverse chemical space, can be rapidly evaluated by biologically and physiologically relevant assays. The origins of numerous United States Food and Drug Administration-approved cancer drugs are linked to HTS, which emphasizes the value in this methodology. The National Institutes of Health Molecular Libraries Program made HTS accessible to the public sector, enabling the development of chemical probes and drug-repurposing initiatives. In this work, the impact of HTS in the field of oncology is considered among both private and public sectors. Examples are given for the discovery and development of approved cancer drugs. The importance of target validation is discussed, and common assay approaches for screening are reviewed. A rigorous examination of the PubChem database demonstrates that public screening centers are contributing to early-stage drug discovery in oncology by focusing on new targets and developing chemical probes. Several case studies highlight the value of different screening strategies and the potential for drug repurposing.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Aprovação de Drogas , Humanos , Estados Unidos , United States Food and Drug Administration
8.
Clin Cancer Res ; 14(4): 1002-14, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18281532

RESUMO

PURPOSE: Squamous cell carcinoma of the head and neck (HNSCC), the sixth most prevalent cancer among men worldwide, is associated with poor prognosis, which has improved only marginally over the past three decades. A proteomic analysis of HNSCC lesions may help identify novel molecular targets for the early detection, prevention, and treatment of HNSCC. EXPERIMENTAL DESIGN: Laser capture microdissection was combined with recently developed techniques for protein extraction from formalin-fixed paraffin-embedded (FFPE) tissues and a novel proteomics platform. Approximately 20,000 cells procured from FFPE tissue sections of normal oral epithelium and well, moderately, and poorly differentiated HNSCC were processed for mass spectrometry and bioinformatic analysis. RESULTS: A large number of proteins expressed in normal oral epithelium and HNSCC, including cytokeratins, intermediate filaments, differentiation markers, and proteins involved in stem cell maintenance, signal transduction, migration, cell cycle regulation, growth and angiogenesis, matrix degradation, and proteins with tumor suppressive and oncogenic potential, were readily detected. Of interest, the relative expression of many of these molecules followed a distinct pattern in normal squamous epithelia and well, moderately, and poorly differentiated HNSCC tumor tissues. Representative proteins were further validated using immunohistochemical studies in HNSCC tissue sections and tissue microarrays. CONCLUSIONS: The ability to combine laser capture microdissection and in-depth proteomic analysis of FFPE tissues provided a wealth of information regarding the nature of the proteins expressed in normal squamous epithelium and during HNSCC progression, which may allow the development of novel biomarkers of diagnostic and prognostic value and the identification of novel targets for therapeutic intervention in HNSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Inclusão em Parafina , Proteômica , Idoso , Biologia Computacional , Progressão da Doença , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Imuno-Histoquímica , Lasers , Masculino , Microdissecção , Pessoa de Meia-Idade , Proteômica/métodos
9.
Cancer Res ; 67(15): 7132-8, 2007 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-17671180

RESUMO

Previously, we have shown that metastasis-associated protein 1 (MTA1) overexpression in transgenic mice was accompanied by high incidence of spontaneous B-cell lymphomas including diffuse large B-cell lymphomas (DLBCL). To understand the molecular basis of lymphoma in MTA1-transgenic (MTA1-TG) mice, we wished to identify a putative MTA1 target with a causal role in B-cell lymphogenesis. Using chromatin immunoprecipitation assays, we identified paired box gene 5 (Pax5), a molecule previously implicated in B-cell lymphogenesis, as a potential downstream effector of MTA1. Lymphomas from MTA1-TG mice also showed up-regulation of Pax5. We also found that MTA1 acetylated on Lys(626) interacted with p300 histone acetyltransferase, and that acetylated MTA1 was recruited to the Pax5 promoter to stimulate Pax5 transcription. Global gene profiling identified down-regulation of a set of genes, including those downstream of Pax5 and directly implicated in the B-cell lymphogenesis. Significance of these murine studies was established by evidence showing a widespread up-regulation of both MTA1 and Pax5 in DLBCL from humans. These observations provide in vivo genetic evidence for a role of MTA1 in lymphomagenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Linfoma de Células B/genética , Linfoma Difuso de Grandes Células B/genética , Fator de Transcrição PAX5/genética , Fatores de Transcrição/fisiologia , Animais , Northern Blotting , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Histona Desacetilase 1 , Histona Desacetilases/genética , Humanos , Linfoma de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Plasmídeos , Regiões Promotoras Genéticas , Proteínas Repressoras , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transativadores , Ativação Transcricional , Transfecção , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA