Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(3)2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33804386

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a massive neuroinflammatory reaction, which plays a key role in the progression of the disease. One of the major mediators of the inflammatory response is the pleiotropic cytokine tumor necrosis factor α (TNFα), mainly released within the central nervous system (CNS) by reactive astrocytes and microglia. Increased levels of TNFα and its receptors (TNFR1 and TNFR2) have been described in plasma, serum, cerebrospinal fluid and CNS tissue from both ALS patients and transgenic animal models of disease. However, the precise role exerted by TNFα in the context of ALS is still highly controversial, since both protective and detrimental functions have been reported. These opposing actions depend on multiple factors, among which includes the type of TNFα receptor activated. In fact, TNFR2 seems to mediate a harmful role being involved in motor neuron cell death, whereas TNFR1 signaling mediates neuroprotective effects, promoting the expression and secretion of trophic factors. This suggests that a better understanding of the cytokine impact on ALS progression may enable the development of effective therapies aimed at strengthening the protective roles of TNFα and at suppressing the detrimental ones.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Camundongos
2.
Cells ; 9(2)2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093304

RESUMO

Diffuse astrocytomas are the most aggressive and lethal glial tumors of the central nervous system (CNS). Their high cellular heterogeneity and the presence of specific barriers, i.e., blood-brain barrier (BBB) and tumor barrier, make these cancers poorly responsive to all kinds of currently available therapies. Standard therapeutic approaches developed to prevent astrocytoma progression, such as chemotherapy and radiotherapy, do not improve the average survival of patients. However, the recent identification of key genetic alterations and molecular signatures specific for astrocytomas has allowed the advent of novel targeted therapies, potentially more efficient and characterized by fewer side effects. Among others, peptides have emerged as promising therapeutic agents, due to their numerous advantages when compared to standard chemotherapeutics. They can be employed as (i) pharmacologically active agents, which promote the reduction of tumor growth; or (ii) carriers, either to facilitate the translocation of drugs through brain, tumor, and cellular barriers, or to target tumor-specific receptors. Since several pathways are normally altered in malignant gliomas, better outcomes may result from combining multi-target strategies rather than targeting a single effector. In the last years, several preclinical studies with different types of peptides moved in this direction, providing promising results in murine models of disease and opening new perspectives for peptide applications in the treatment of high-grade brain tumors.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Peptídeos/uso terapêutico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Humanos , Camundongos , Gradação de Tumores
3.
Curr Opin Pharmacol ; 47: 102-109, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30959356

RESUMO

Peptides have emerged as novel and promising medicaments for the treatment of many human diseases, including tumors. In the treatment of cancer, they can be employed directly as bioactive therapeutics, promoting the reduction of tumor growth, but also as drug delivery systems, to facilitate the passage of drugs through cell and tissue barriers and to increase the selectivity of therapeutics for tumor cells. The advantages of peptides over standard chemotherapeutic agents are several-fold and include ease of synthesis, high efficacy, reduced side-effects, and low production cost. Numerous preclinical evaluations with different types of peptides have provided promising results in murine brain tumor models. Some of the most effective molecules were translated into clinical trials, opening new perspectives for the treatment of high-grade brain tumors and metastases.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Desenvolvimento de Medicamentos , Humanos
4.
J Neurol ; 265(3): 510-521, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29322259

RESUMO

Elevated cerebrospinal fluid (CSF), Neurofilament Light (NF-L) and phosphorylated Heavy (pNF-H) chain levels have been found in Amyotrophic Lateral Sclerosis (ALS), with studies reporting a correlation of both neurofilaments (NFs) with the disease progression. Here, we measured NF-L and pNF-H concentrations in the CSF of ALS patients from a single tertiary Center and investigated their relationship with disease-related variables. A total of 190 ALS patients (Bulbar, 29.9%; Spinal, 70.1%; M/F = 1.53) and 130 controls with mixed neurological diseases were recruited. Demographic and clinical variables were recorded, and ΔFS was used to rate the disease progression. Controls were divided into two cohorts: (1) patients with non-inflammatory neurological diseases (CTL-1); (2) patients with acute/subacute inflammatory diseases and tumors, expected to lead to significant axonal and tissue damage (CTL-2). For each patient and control, CSF was taken at the time of the diagnostic work-up and stored following the published guidelines. CSF NF-L and pNF-H were assayed with commercially available ELISA-based methods. Standard curves (from independent ELISA kits) were highly reproducible for both NFs, with a coefficient of variation < 20%. We found that CSF NF-L and pNF-H levels in ALS were significantly increased when compared to CTL-1 (NF-L: ALS, 4.7 ng/ml vs CTL-1, 0.61 ng/ml, p < 0.001; pNF-H: ALS, 1.7 ng/ml vs CTL-1, 0.03 ng/ml, p < 0.0001), but not to CTL-2. Analysis of different clinical and prognostic variables disclosed meaningful correlations with both NF-L and pNF-H levels. Our results, from a relatively large ALS cohort, confirm that CSF NF-L and pNF-H represent valuable diagnostic and prognostic biomarkers in ALS.


Assuntos
Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Idoso , Área Sob a Curva , Biomarcadores/líquido cefalorraquidiano , Diagnóstico Diferencial , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Inflamação/líquido cefalorraquidiano , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Bandas Oligoclonais/líquido cefalorraquidiano , Fosforilação , Prognóstico , Curva ROC
5.
Hum Mol Genet ; 25(14): 3080-3095, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27288458

RESUMO

Considerable evidence indicates that neurodegeneration in amyotrophic lateral sclerosis (ALS) can be conditioned by a deleterious interplay between motor neurons and astrocytes. Astrocytes are the major glial component in the central nervous system (CNS) and fulfill several activities that are essential to preserve CNS homeostasis. In physiological and pathological conditions, astrocytes secrete a wide range of factors by which they exert multimodal influences on their cellular neighbours. Among others, astrocytes can secrete glial cell line-derived neurotrophic factor (GDNF), one of the most potent protective agents for motor neurons. This suggests that the modulation of the endogenous mechanisms that control the production of astrocytic GDNF may have therapeutic implications in motor neuron diseases, particularly ALS. In this study, we identified TNF receptor 1 (TNFR1) signalling as a major promoter of GDNF synthesis/release from human and mouse spinal cord astrocytes in vitro and in vivo To determine whether endogenously produced TNFα can also trigger the synthesis of GDNF in the nervous system, we then focused on SOD1G93A ALS transgenic mice, whose affected tissues spontaneously exhibit high levels of TNFα and its receptor 1 at the onset and symptomatic stage of the disease. In SOD1G93A spinal cords, we verified a strict correlation in the expression of the TNFα, TNFR1 and GDNF triad at different stages of disease progression. Yet, ablation of TNFR1 completely abolished GDNF rises in both SOD1G93A astrocytes and spinal cords, a condition that accelerated motor neuron degeneration and disease progression. Our data suggest that the astrocytic TNFR1-GDNF axis represents a novel target for therapeutic intervention in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/biossíntese , Degeneração Neural/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Progressão da Doença , Regulação da Expressão Gênica , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/patologia , Transdução de Sinais , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Fator de Necrose Tumoral alfa/biossíntese
6.
Neural Plast ; 2015: 381964, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26266054

RESUMO

Several lines of evidence suggest that astrocytes play a key role in modulating the immune responses of the central nervous system (CNS) to infections, injuries, or pathologies. Yet, their contribution to these processes remains mostly elusive. Astroglia are endowed with a wide range of toll-like receptors (TLR) by which they can sense infectious agents as well as endogenous danger signals released by damaged cells. Here we demonstrate that the activation of astrocytic TLR4 by bacterial lipopolysaccharide (LPS) challenge can promote nuclear factor κB (NF-κB)-dependent induction of pro-inflammatory and stress response mediators, particularly Tumor Necrosis Factor α (TNFα), cyclooxygenase 2 (COX-2), and inducible nitric oxide synthase (iNOS). Since the steroid lactone Withaferin A was described to inhibit NF-κB activity in different cell types, we next determined the impact of this natural compound towards the identified astrocytic signalling pathway. Innate immune activation was induced by stimulation of the LPS/TLR4 axis in spinal cord astrocytes. We provide evidence that both pre-treating and post-treating the cells with Withaferin A attenuate astrocytic NF-κB activity as well as the consequent production of TNFα, COX-2, and iNOS induced by stimulation of the LPS/TLR4 pathway. This study suggests that Withaferin A may be an eligible candidate for the treatment of neuroinflammatory and stress conditions characterized by an important astrocytic input.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Astrócitos/efeitos dos fármacos , Encefalite/fisiopatologia , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Estresse Psicológico/fisiopatologia , Vitanolídeos/farmacologia , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Humanos , Lipopolissacarídeos/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética
7.
Cell Mol Life Sci ; 71(2): 287-97, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23912896

RESUMO

Despite indisputable progress in the molecular and genetic aspects of amyotrophic lateral sclerosis (ALS), a mechanistic comprehension of the neurodegenerative processes typical of this disorder is still missing and no effective cures to halt the progression of this pathology have yet been developed. Therefore, it seems that a substantial improvement of the outcome of ALS treatments may depend on a better understanding of the molecular mechanisms underlying neuronal pathology and survival as well as on the establishment of novel etiological therapeutic strategies. Noteworthy, a convergence of recent data from multiple studies suggests that, in cellular and animal models of ALS, a complex pathological interplay subsists between motor neurons and their non-neuronal neighbours, particularly glial cells. These observations not only have drawn attention to the physiopathological changes glial cells undergo during ALS progression, but they have moved the focus of the investigations from intrinsic defects and weakening of motor neurons to glia-neuron interactions. In this review, we summarize the growing body of evidence supporting the concept that different glial populations are critically involved in the dreadful chain of events leading to motor neuron sufferance and death in various forms of ALS. The outlined observations strongly suggest that glial cells can be the targets for novel therapeutic interventions in ALS.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Microglia/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Proteínas de Membrana Transportadoras , Microglia/citologia , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Fator de Transcrição TFIIIA/genética , Fator de Transcrição TFIIIA/metabolismo
8.
Hum Mol Genet ; 21(4): 826-40, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22072391

RESUMO

Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Sinalização do Cálcio , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Desempenho Psicomotor/efeitos dos fármacos , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1 , Análise de Sobrevida , Proteína bcl-X/farmacologia
9.
CNS Drugs ; 25(8): 641-58, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21790208

RESUMO

The seminal discovery that glial cells, particularly astrocytes, can release a number of gliotransmitters that serve as signalling molecules for the cross-talk with neighbouring cellular populations has recently changed our perception of brain functioning, as well as our view of the pathogenesis of several disorders of the CNS. Since glutamate was one of the first gliotransmitters to be identified and characterized, we tackle the mechanisms that underlie its release from astrocytes, including the Ca2+ signals underlying its efflux from astroglia, and we discuss the involvement of these events in a number of relevant physiological processes, from the modulatory control of neighbouring synapses to the regulation of blood supply to cerebral tissues. The relevance of these mechanisms strongly indicates that the contribution of glial cells and gliotransmission to the activities of the brain cannot be overlooked, and any study of CNS physiopathology needs to consider glial biology to have a comprehensive overview of brain function and dysfunction. Abnormalites in the signalling that controls the astrocytic release of glutamate are described in several experimental models of neurological disorders, for example, AIDS dementia complex, Alzheimer's disease and cerebral ischaemia. While the modalities of glutamate release from astrocytes remain poorly understood, and this represents a major impediment to the definition of novel therapeutic strategies targeting this process at the molecular level, some key mediators deputed to the control of the glial release of this excitatory amino acid have been identified. Among these, we can mention, for instance, proinflammatory cytokines, such as tumour necrosis factor-α, and prostaglandins. Agents that are able to block the major steps of tumour necrosis factor-α and prostaglandin production and/or signalling can be proposed as novel therapeutic targets for the treatment of these disorders.


Assuntos
Fármacos do Sistema Nervoso Central/farmacologia , Doenças do Sistema Nervoso Central/fisiopatologia , Neuroglia/metabolismo , Animais , Astrócitos/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Glutâmico/metabolismo , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
10.
Int Rev Neurobiol ; 82: 57-71, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17678955

RESUMO

Although glial cells have been traditionally viewed as supportive partners of neurons, studies of the last 20 years demonstrate that astrocytes possess functional receptors for neurotransmitters and other signaling molecules and respond to their stimulation via release of chemical transmitters (called gliotransmitters) such as glutamate, ATP, and d-serine. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca(2+)](i)) elevations, which result in the release of glutamate via regulated exocytosis and possibly other mechanisms. These findings have led to a new concept of neuron-glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional discovery that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor-alpha (TNF-alpha) and prostaglandins, suggests that glia-to-neuron signaling may be sensitive to changes in production of these mediators in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including Alzheimer's disease and AIDS dementia complex. This transition to a reactive state may be accompanied by a disruption of the cross talk normally occurring between astrocytes and neurons and so contribute to disease development. The findings reported in this chapter suggest that a better comprehension of the glutamatergic interplay between neurons and glia may provide information about normal brain function and also highlight possible molecular targets for therapeutic interventions in pathology.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Cálcio/fisiologia , Humanos , Inflamação/patologia , Doenças Neurodegenerativas/patologia
11.
J Biol Chem ; 281(41): 30684-96, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-16882655

RESUMO

ATP, released by both neurons and glia, is an important mediator of brain intercellular communication. We find that selective activation of purinergic P2Y1 receptors (P2Y1R) in cultured astrocytes triggers glutamate release. By total internal fluorescence reflection imaging of fluorescence-labeled glutamatergic vesicles, we document that such release occurs by regulated exocytosis. The stimulus-secretion coupling mechanism involves Ca2+ release from internal stores and is controlled by additional transductive events mediated by tumor necrosis factor-alpha (TNFalpha) and prostaglandins (PG). P2Y1R activation induces release of both TNFalpha and PGE2 and blocking either one significantly reduces glutamate release. Accordingly, astrocytes from TNFalpha-deficient (TNF(-/-)) or TNF type 1 receptor-deficient (TNFR1(-/-)) mice display altered P2Y1R-dependent Ca2+ signaling and deficient glutamate release. In mixed hippocampal cultures, the P2Y1R-evoked process occurs in astrocytes but not in neurons or microglia. P2Y1R stimulation induces Ca2+ -dependent glutamate release also from acute hippocampal slices. The process in situ displays characteristics resembling those in cultured astrocytes and is distinctly different from synaptic glutamate release evoked by high K+ stimulation as follows: (a) it is sensitive to cyclooxygenase inhibitors; (b) it is deficient in preparations from TNF(-/-) and TNFR1(-/-) mice; and (c) it is inhibited by the exocytosis blocker bafilomycin A1 with a different time course. No glutamate release is evoked by P2Y1R-dependent stimulation of hippocampal synaptosomes. Taken together, our data identify the coupling of purinergic P2Y1R to glutamate exocytosis and its peculiar TNFalpha- and PG-dependent control, and we strongly suggest that this cascade operates selectively in astrocytes. The identified pathway may play physiological roles in glial-glial and glial-neuronal communication.


Assuntos
Ácido Glutâmico/química , Prostaglandinas/metabolismo , Receptores Purinérgicos P2/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Astrócitos/metabolismo , Linhagem Celular , Exocitose , Hipocampo/metabolismo , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Neurônios/metabolismo , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1
12.
J Biol Chem ; 280(51): 42088-96, 2005 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-16253995

RESUMO

The cytokine tumor necrosis factor-alpha (TNFalpha) induces Ca2+-dependent glutamate release from astrocytes via the downstream action of prostaglandin (PG) E2. By this process, astrocytes may participate in intercellular communication and neuromodulation. Acute inflammation in vitro, induced by adding reactive microglia to astrocyte cultures, enhances TNFalpha production and amplifies glutamate release, switching the pathway into a neurodamaging cascade (Bezzi, P., Domercq, M., Brambilla, L., Galli, R., Schols, D., De Clercq, E., Vescovi, A., Bagetta, G., Kollias, G., Meldolesi, J., and Volterra, A. (2001) Nat. Neurosci. 4, 702-710). Because glial inflammation is a component of Alzheimer disease (AD) and TNFalpha is overexpressed in AD brains, we investigated possible alterations of the cytokine-dependent pathway in PDAPP mice, a transgenic model of AD. Glutamate release was measured in acute hippocampal and cerebellar slices from mice at early (4-month-old) and late (12-month-old) disease stages in comparison with age-matched controls. Surprisingly, TNFalpha-evoked glutamate release, normal in 4-month-old PDAPP mice, was dramatically reduced in the hippocampus of 12-month-old animals. This defect correlated with the presence of numerous beta-amyloid deposits and hypertrophic astrocytes. In contrast, release was normal in cerebellum, a region devoid of beta-amyloid deposition and astrocytosis. The Ca2+-dependent process by which TNFalpha evokes glutamate release in acute slices is distinct from synaptic release and displays properties identical to those observed in cultured astrocytes, notably PG dependence. However, prostaglandin E2 induced normal glutamate release responses in 12-month-old PDAPP mice, suggesting that the pathology-associated defect involves the TNFalpha-dependent control of secretion rather than the secretory process itself. Reduced expression of DENN/MADD, a mediator of TNFalpha-PG coupling, might account for the defect. Alteration of this neuromodulatory astrocytic pathway is described here for the first time in relation to Alzheimer disease.


Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Ácido Glutâmico/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Sequência de Bases , Primers do DNA , Gliose , Hipocampo/metabolismo , Hipocampo/patologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA