Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 24(11): e57842, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37768718

RESUMO

Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs is postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observe pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR engagement of highly abundant endogenous pMHCIIs is low or non-existent and affects neither TCR engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches.


Assuntos
Antígenos de Histocompatibilidade Classe II , Linfócitos T , Peptídeos/metabolismo , Antígenos , Receptores de Antígenos de Linfócitos T
2.
Biophys J ; 117(10): 1935-1947, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31653451

RESUMO

Dimerization or the formation of higher-order oligomers is required for the activation of ErbB receptor tyrosine kinases. The heregulin (HRG) receptor, ErbB3, must heterodimerize with other members of the family, preferentially ErbB2, to form a functional signal transducing complex. Here, we applied single molecule imaging capable of detecting long-lived and mobile associations to measure their stoichiometry and mobility and analyzed data from experiments globally, taking the different lateral mobility of monomeric and dimeric molecular species into account. Although ErbB3 was largely monomeric in the absence of stimulation and ErbB2 co-expression, a small fraction was present as constitutive homodimers exhibiting a ∼40% lower mobility than monomers. HRG stimulation increased the homodimeric fraction of ErbB3 significantly and reduced the mobility of homodimers fourfold compared to constitutive homodimers. Expression of ErbB2 elevated the homodimeric fraction of ErbB3 even in unstimulated cells and induced a ∼2-fold reduction in the lateral mobility of ErbB3 homodimers. The mobility of ErbB2 was significantly lower than that of ErbB3, and HRG induced a less pronounced decrease in the diffusion coefficient of all ErbB2 molecules and ErbB3/ErbB2 heterodimers than in the mobility of ErbB3. The slower diffusion of ErbB2 compared to ErbB3 was abolished by depolymerizing actin filaments, whereas ErbB2 expression induced a substantial rearrangement of microfilaments, implying a bidirectional interaction between ErbB2 and actin. HRG stimulation of cells co-expressing ErbB3 and ErbB2 led to the formation of ErbB3 homodimers and ErbB3/ErbB2 heterodimers in a competitive fashion. Although pertuzumab, an antibody binding to the dimerization arm of ErbB2, completely abolished the formation of constitutive and HRG-induced ErbB3/ErbB2 heterodimers, it only slightly blocked ErbB3 homodimerization. The results imply that a dynamic equilibrium exists between constitutive and ligand-induced homo- and heterodimers capable of shaping transmembrane signaling.


Assuntos
Multimerização Proteica , Receptor ErbB-3/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Difusão , Recuperação de Fluorescência Após Fotodegradação , Humanos , Proteínas Imobilizadas/metabolismo , Neuregulina-1/metabolismo , Receptor ErbB-2/metabolismo
3.
Atherosclerosis ; 277: 53-59, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30173079

RESUMO

BACKGROUND AND AIMS: Exchange of cholesterol between high-density lipoprotein (HDL) particles and cells is a key process for maintaining cellular cholesterol homeostasis. Recently, we have shown that amphiphilic cargo derived from HDL can be transferred directly to lipid bilayers. Here we pursued this work using a fluorescence-based method to directly follow cargo transfer from HDL particles to the cell membrane. METHODS: HDL was either immobilized on surfaces or added directly to cells, while transfer of fluorescent cargo was visualized via fluorescence imaging. RESULTS: In Chinese hamster ovary (CHO) cells expressing the scavenger receptor class B type 1 (SR-B1), transfer of amphiphilic cargo from HDL particles to the plasma membrane was observed immediately after contact, whereas hydrophobic cargo remained associated with the particles; about 60% of the amphiphilic cargo of surface-bound HDL was transferred to the plasma membrane. Essentially no cargo transfer was observed in cells with low endogenous SR-B1 expression. Interestingly, transfer of fluorescently-labeled cholesterol was also facilitated by using an artificial linker to bind HDL to the cell surface. CONCLUSIONS: Our data hence indicate that the tethering function of SR-B1 is sufficient for efficient transfer of free cholesterol to the plasma membrane.


Assuntos
Antígenos CD36/metabolismo , Membrana Celular/metabolismo , HDL-Colesterol/sangue , Microscopia de Fluorescência , Imagem Individual de Molécula/métodos , Animais , Células CHO , Cricetulus , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Interações Hidrofóbicas e Hidrofílicas , Transporte Proteico , Propriedades de Superfície , Fatores de Tempo
4.
Biomolecules ; 8(2)2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29772810

RESUMO

The organization and dynamics of proteins and lipids in the plasma membrane, and their role in membrane functionality, have been subject of a long-lasting debate. Specifically, it is unclear to what extent membrane proteins are affected by their immediate lipid environment and vice versa. Studies on model membranes and plasma membrane vesicles indicated preferences of proteins for lipid phases characterized by different acyl chain order; however, whether such phases do indeed exist in live cells is still not known. Here, we refine a previously developed micropatterning approach combined with single molecule tracking to quantify the influence of the glycosylphosphatidylinositol-anchored (GPI-anchored) protein CD59 on its molecular environment directly in the live cell plasma membrane. We find that locally enriched and immobilized CD59 presents obstacles to the diffusion of fluorescently labeled lipids with a different phase-partitioning behavior independent of cell cholesterol levels and type of lipid. Our results give no evidence for either specific binding of the lipids to CD59 or the existence of nanoscopic ordered membrane regions associated with CD59.


Assuntos
Antígenos CD59/química , Lipídeos de Membrana/química , Microdomínios da Membrana/química , Imagem Individual de Molécula/métodos , Antígenos CD59/metabolismo , Linhagem Celular Tumoral , Difusão , Humanos , Lipídeos de Membrana/metabolismo , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/ultraestrutura
5.
Nat Commun ; 6: 6969, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25897971

RESUMO

The organization of proteins and lipids in the plasma membrane has been the subject of a long-lasting debate. Membrane rafts of higher lipid chain order were proposed to mediate protein interactions, but have thus far not been directly observed. Here we use protein micropatterning combined with single-molecule tracking to put current models to the test: we rearranged lipid-anchored raft proteins (glycosylphosphatidylinositol(GPI)-anchored-mGFP) directly in the live cell plasma membrane and measured the effect on the local membrane environment. Intriguingly, this treatment does neither nucleate the formation of an ordered membrane phase nor result in any enrichment of nanoscopic-ordered domains within the micropatterned regions. In contrast, we find that immobilized mGFP-GPIs behave as inert obstacles to the diffusion of other membrane constituents without influencing their membrane environment over distances beyond their physical size. Our results indicate that phase partitioning is not a fundamental element of protein organization in the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Proteínas Ligadas a Lipídeos/metabolismo , Antígenos CD59/química , Antígenos CD59/metabolismo , Carcinoma/metabolismo , Linhagem Celular Tumoral , Glicosilfosfatidilinositóis/química , Proteínas de Fluorescência Verde , Humanos , Fragmentos Fab das Imunoglobulinas , Proteínas Ligadas a Lipídeos/química , Estrutura Terciária de Proteína
6.
Immunity ; 39(5): 846-57, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24120362

RESUMO

We have developed a single-molecule imaging technique that uses quantum-dot-labeled peptide-major histocompatibility complex (pMHC) ligands to study CD4(+) T cell functional sensitivity. We found that naive T cells, T cell blasts, and memory T cells could all be triggered by a single pMHC to secrete tumor necrosis factor-α (TNF-α) and interleukin-2 (IL-2) cytokines with a rate of ∼1,000, ∼10,000, and ∼10,000 molecules/min, respectively, and that additional pMHCs did not augment secretion, indicating a digital response pattern. We also found that a single pMHC localized to the immunological synapse induced the slow formation of a long-lasting T cell receptor (TCR) cluster, consistent with a serial engagement mechanism. These data show that scaling up CD4(+) T cell cytokine responses involves increasingly efficient T cell recruitment rather than greater cytokine production per cell.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunidade Adaptativa , Sequência de Aminoácidos , Animais , Apresentação de Antígeno , Biotinilação , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular , Imunoconjugados , Memória Imunológica , Sinapses Imunológicas , Interleucina-2/metabolismo , Ativação Linfocitária , Dados de Sequência Molecular , Mariposas , Fragmentos de Peptídeos/imunologia , Pontos Quânticos , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Taxa Secretória , Análise de Célula Única , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Cytometry A ; 83(9): 847-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23125142

RESUMO

Quantification of protein interactions in living cells is of key relevance for understanding cellular signaling. With current techniques, however, it is difficult to determine binding affinities and stoichiometries of protein complexes in the plasma membrane. We introduce here protein micropatterning as a convenient and versatile method for such investigations. Cells are grown on surfaces containing micropatterns of capture antibody to a bait protein, so that the bait gets rearranged in the live cell plasma membrane. Upon interaction with the bait, the fluorescent prey follows the micropatterns, which can be readout with fluorescence microscopy. In this study, we addressed the interaction between Lck and CD4, two central proteins in early T-cell signaling. Binding curves were recorded using the natural fluctuations in the Lck expression levels. Surprisingly, the binding was not saturable up to the highest Lck expression levels: on average, a single CD4 molecule recruited more than nine Lck molecules. We discuss the data in view of protein- and lipid-mediated interactions.


Assuntos
Antígenos CD4/metabolismo , Membrana Celular/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Microscopia de Fluorescência , Ligação Proteica , Mapeamento de Interação de Proteínas
8.
PLoS One ; 6(12): e28818, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174906

RESUMO

Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in 'membrane-lipid therapy' to combat many various protein-misfolding diseases associated with aging.


Assuntos
Proteínas de Choque Térmico/metabolismo , Lipídeos de Membrana/uso terapêutico , Microdomínios da Membrana/metabolismo , Oximas/farmacologia , Piperidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Células CHO , Colesterol/metabolismo , Cricetinae , Cricetulus , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/efeitos dos fármacos , Humanos , Melanoma/metabolismo , Melanoma/patologia , Microdomínios da Membrana/efeitos dos fármacos , Camundongos , Simulação de Dinâmica Molecular , Nanoestruturas/química , Temperatura , beta-Ciclodextrinas/farmacologia , Proteínas rac1 de Ligação ao GTP/metabolismo
9.
Biochim Biophys Acta ; 1808(10): 2581-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21718688

RESUMO

Cationic antimicrobial peptides (CAMPs) selectively target bacterial membranes by electrostatic interactions with negatively charged lipids. It turned out that for inhibition of microbial growth a high CAMP membrane concentration is required, which can be realized by the incorporation of hydrophobic groups within the peptide. Increasing hydrophobicity, however, reduces the CAMP selectivity for bacterial over eukaryotic host membranes, thereby causing the risk of detrimental side-effects. In this study we addressed how cationic amphipathic peptides-in particular a CAMP with Lysine-Leucine-Lysine repeats (termed KLK)-affect the localization and dynamics of molecules in eukaryotic membranes. We found KLK to selectively inhibit the endocytosis of a subgroup of membrane proteins and lipids by electrostatically interacting with negatively charged sialic acid moieties. Ultrastructural characterization revealed the formation of membrane invaginations representing fission or fusion intermediates, in which the sialylated proteins and lipids were immobilized. Experiments on structurally different cationic amphipathic peptides (KLK, 6-MO-LF11-322 and NK14-2) indicated a cooperation of electrostatic and hydrophobic forces that selectively arrest sialylated membrane constituents.


Assuntos
Lipídeos de Membrana/química , Proteínas de Membrana/química , Ácido N-Acetilneuramínico/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Cátions , Células Cultivadas , Humanos , Microscopia Eletrônica , Microscopia de Fluorescência
10.
Methods Enzymol ; 472: 133-51, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20580963

RESUMO

Our understanding of complex biological systems is based on high-quality proteomics tools for the parallelized detection and quantification of protein interactions. Current screening platforms, however, rely on measuring protein interactions in rather artificial systems, rendering the results difficult to confer on the in vivo situation. We describe here a detailed protocol for the design and the construction of a system to detect and quantify interactions between a fluorophore-labeled protein ("prey") and a membrane protein ("bait") in living cells. Cells are plated on micropatterned surfaces functionalized with antibodies to the bait exoplasmic domain. Bait-prey interactions are assayed via the redistribution of the fluorescent prey. The method is characterized by high sensitivity down to the level of single molecules, the capability to detect weak interactions, and high throughput, making it applicable as a screening tool. The proof-of-concept is demonstrated for the interaction between CD4, a major coreceptor in T-cell signaling, and Lck, a protein tyrosine kinase essential for early T-cell signaling.


Assuntos
Técnicas de Cultura de Células , Membrana Celular/metabolismo , Mapeamento de Interação de Proteínas , Animais , Antígenos CD4/metabolismo , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Membrana Celular/química , Células Cultivadas , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/instrumentação , Mapeamento de Interação de Proteínas/métodos , Propriedades de Superfície
11.
Nature ; 463(7283): 963-7, 2010 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-20164930

RESUMO

The recognition of foreign antigens by T lymphocytes is essential to most adaptive immune responses. It is driven by specific T-cell antigen receptors (TCRs) binding to antigenic peptide-major histocompatibility complex (pMHC) molecules on other cells. If productive, these interactions promote the formation of an immunological synapse. Here we show that synaptic TCR-pMHC binding dynamics differ significantly from TCR-pMHC binding in solution. We used single-molecule microscopy and fluorescence resonance energy transfer (FRET) between fluorescently tagged TCRs and their cognate pMHC ligands to measure the kinetics of TCR-pMHC binding in situ. When compared with solution measurements, the dissociation of this complex was increased significantly (4-12-fold). Disruption of actin polymers reversed this effect, indicating that cytoskeletal dynamics destabilize this interaction directly or indirectly. Nevertheless, TCR affinity for pMHC was significantly elevated as the result of a large (about 100-fold) increase in the association rate, a likely consequence of complementary molecular orientation and clustering. In helper T cells, the CD4 molecule has been proposed to bind cooperatively with the TCR to the same pMHC complex. However, CD4 blockade had no effect on the synaptic TCR affinity, nor did it destabilize TCR-pMHC complexes, indicating that the TCR binds pMHC independently of CD4.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Peptídeos/imunologia , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Actinas/metabolismo , Animais , Antígenos CD4/efeitos dos fármacos , Antígenos CD4/metabolismo , Linhagem Celular , Células Cultivadas , Citoesqueleto/metabolismo , Drosophila melanogaster , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Antígenos de Histocompatibilidade Classe I/imunologia , Sinapses Imunológicas/efeitos dos fármacos , Cinética , Ligantes , Camundongos , Camundongos Transgênicos , Ligação Proteica/efeitos dos fármacos , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais , Ressonância de Plasmônio de Superfície , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA