Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 85(2): 1028-1038, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32770779

RESUMO

PURPOSE: To quantitatively compare dynamic 19 F and single breath hyperpolarized 129 Xe MRI for the detection of ventilation abnormalities in subjects with mild cystic fibrosis (CF) lung disease. METHODS: Ten participants with stable CF and a baseline FEV1 > 70% completed a single imaging session where dynamic 19 F and single breath 129 Xe lung ventilation images were acquired on a 3T MRI scanner. Ventilation defect percentages (VDP) values between 19 F early-breath, 19 F maximum-ventilation, 129 Xe low-resolution, and 129 Xe high-resolution images were compared. Dynamic 19 F images were used to determine gas wash-in/out rates in regions of ventilation congruency and mismatch between 129 Xe and 19 F. RESULTS: VDP values from high-resolution 129 Xe images were greater than from low-resolution images (P = .001), although these values were significantly correlated (r = 0.68, P = .03). Early-breath 19 F VDP and max-vent 19 F VDP also showed significant correlation (r = 0.75, P = .012), with early-breath 19 F VDP values being significantly greater (P < .001). No correlation in VDP values were detected between either 19 F method or high-res 129 Xe images. In addition, the location and volume of ventilation defects were often different when comparing 129 Xe and 19 F images from the same subject. Areas of ventilation congruence displayed the expected ventilation kinetics, while areas of ventilation mismatch displayed abnormally slow gas wash-in and wash-out. CONCLUSION: In CF subjects, ventilation abnormalities are identified by both 19 F and HP 129 Xe imaging. However, these ventilation abnormalities are not entirely congruent. 19 F and HP 129 Xe imaging provide complementary information that enable differentiation of normally ventilated, slowly ventilated, and non-ventilated regions in the lungs.


Assuntos
Fibrose Cística , Fibrose Cística/diagnóstico por imagem , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética , Respiração , Isótopos de Xenônio
2.
J Magn Reson ; 291: 53-62, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29702362

RESUMO

SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) are often used in magnetic resonance imaging experiments to enhance Magnetic Resonance (MR) sensitivity and specificity. While the effect of SPIONs on the longitudinal and transverse relaxation time of 1H spins has been well characterized, their effect on highly diffusive spins, like those of hyperpolarized gases, has not. For spins diffusing in linear magnetic field gradients, the behavior of the magnetization is characterized by the relative size of three length scales: the diffusion length, the structural length, and the dephasing length. However, for spins diffusing in non-linear gradients, such as those generated by iron oxide nanoparticles, that is no longer the case, particularly if the diffusing spins experience the non-linearity of the gradient. To this end, 3D Monte Carlo simulations are used to simulate the signal decay and the resulting image contrast of hyperpolarized xenon gas near SPIONs. These simulations reveal that signal loss near SPIONs is dominated by transverse relaxation, with little contribution from T1 relaxation, while simulated image contrast and experiments show that diffusion provides no appreciable sensitivity enhancement to SPIONs.


Assuntos
Meios de Contraste/química , Imagem de Difusão por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Xenônio/química , Algoritmos , Simulação por Computador , Difusão , Campos Eletromagnéticos , Gases/química , Imagens de Fantasmas
3.
J Magn Reson ; 273: 124-129, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27825066

RESUMO

The production of large volumes of highly polarized noble gases like helium and xenon is vital to applications of magnetic resonance imaging and spectroscopy with hyperpolarized (HP) gas in humans. In the past ten years, 129Xe has become the gas of choice due to its lower cost, higher availability, relatively high tissue solubility, and wide range of chemical shift values. Though near unity levels of xenon polarization have been achieved in-cell using stopped-flow Spin Exchange Optical Pumping (SEOP), these levels are currently unmatched by continuous-flow SEOP methods. Among the various mechanisms that cause xenon relaxation, such as persistent and transient xenon dimers, wall collisions, and interactions with oxygen, relaxation due to diffusion in magnetic field gradients, caused by rapidly changing magnetic field strength and direction, is often ignored. However, during continuous-flow SEOP production, magnetic field gradients may not have a negligible contribution, especially considering that this methodology requires the combined use of magnets with very different characteristics (low field for spin exchange optical pumping and high field for the reduction of xenon depolarization in the solid state during the freeze out phase) that, when placed together, inevitably create magnetic field gradients along the gas-flow-path. Here, a combination of finite element analysis and Monte Carlo simulations is used to determine the effect of such magnetic field gradients on xenon gas polarization with applications to a specific, continuous-flow hyperpolarization system.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Isótopos de Xenônio
4.
J Chem Phys ; 131(20): 204510, 2009 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19947697

RESUMO

A recent quantum computing paper (G. S. Uhrig, Phys. Rev. Lett. 98, 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two-level system coupled to a bath. The spacings in what has been called a "Uhrig dynamic decoupling (UDD) sequence" differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different time scales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T(2)-weighted contrast than do CPMG sequences with the same number of pulses and total delay, with substantial enhancements in most regions. This permits improved characterization of low-frequency spectral density functions in a wide range of applications.


Assuntos
Meios de Contraste , Reforma dos Serviços de Saúde/ética , Reforma dos Serviços de Saúde/métodos , Imageamento por Ressonância Magnética/tendências , Espectroscopia de Ressonância Magnética/métodos , Animais , Meios de Contraste/química , Reforma dos Serviços de Saúde/organização & administração , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA