Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 10(12)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36557665

RESUMO

Aspidasept (Pep19-2.5) and its derivative Pep19-4LF ("Aspidasept II") are anti-infective and anti-inflammatory synthetic polypeptides currently in development for application against a variety of moderate to severe bacterial infections that could lead to systemic inflammation, as in the case of severe sepsis and septic shock, as well as application to non-systemic diseases in the case of skin and soft tissue infections (SSTI). In the present study, Aspidasept and Aspidasept II and their part structures were analysed with respect to their toxic behavior in different established models against a variety of relevant cells, and in electrophysiological experiments targeting the hERG channel according to ICH S7B. Furthermore, the effects in mouse models of neurobiological behavior and the local lymph node according to OECD test guideline 429 were investigated, as well as a rat model of repeated dose toxicology according to ICH M3. The data provide conclusive information about potential toxic effects, thus specifying a therapeutic window for the application of the peptides. Therefore, these data allow us to define Aspidasept concentrations for their use in clinical studies as parenteral application.

2.
Pharmaceutics ; 14(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36432719

RESUMO

The lack of safe and cost-effective treatments against leishmaniasis highlights the urgent need to develop improved leishmanicidal agents. Antimicrobial peptides (AMPs) are an emerging category of therapeutics exerting a wide range of biological activities such as anti-bacterial, anti-fungal, anti-parasitic and anti-tumoral. In the present study, the approach of repurposing AMPs as antileishmanial drugs was applied. The leishmanicidal activity of two synthetic anti-lipopolysaccharide peptides (SALPs), so-called 19-2.5 and 19-4LF was characterized in Leishmania major. In vitro, both peptides were highly active against intracellular Leishmania major in mouse macrophages without exerting toxicity in host cells. Then, q-PCR-based gene profiling, revealed that this activity was related to the downregulation of several genes involved in drug resistance (yip1), virulence (gp63) and parasite proliferation (Cyclin 1 and Cyclin 6). Importantly, the treatment of BALB/c mice with any of the two AMPs caused a significant reduction in L. major infective burden. This effect was associated with an increase in Th1 cytokine levels (IL-12p35, TNF-α, and iNOS) in the skin lesion and spleen of the L. major infected mice while the Th2-associated genes were downregulated (IL-4 and IL-6). Lastly, we investigated the effect of both peptides in the gene expression profile of the P2X7 purinergic receptor, which has been reported as a therapeutic target in several diseases. The results showed significant repression of P2X7R by both peptides in the skin lesion of L. major infected mice to an extent comparable to that of a common anti-leishmanial drug, Paromomycin. Our in vitro and in vivo studies suggest that the synthetic AMPs 19-2.5 and 19-4LF are promising candidates for leishmaniasis treatment and present P2X7R as a potential therapeutic target in cutaneous leishmaniasis (CL).

3.
Biomolecules ; 11(7)2021 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-34356608

RESUMO

Anti-microbial peptides (AMPs), small biologically active molecules, produced by different organisms through their innate immune system, have become a considerable subject of interest in the request of novel therapeutics. Most of these peptides are cationic-amphipathic, exhibiting two main mechanisms of action, direct lysis and by modulating the immunity. The most commonly reported activity of AMPs is their anti-bacterial effects, although other effects, such as anti-fungal, anti-viral, and anti-parasitic, as well as anti-tumor mechanisms of action have also been described. Their anti-parasitic effect against leishmaniasis has been studied. Leishmaniasis is a neglected tropical disease. Currently among parasitic diseases, it is the second most threating illness after malaria. Clinical treatments, mainly antimonial derivatives, are related to drug resistance and some undesirable effects. Therefore, the development of new therapeutic agents has become a priority, and AMPs constitute a promising alternative. In this work, we describe the principal families of AMPs (melittin, cecropin, cathelicidin, defensin, magainin, temporin, dermaseptin, eumenitin, and histatin) exhibiting a potential anti-leishmanial activity, as well as their effectiveness against other microorganisms.


Assuntos
Antiprotozoários/uso terapêutico , Leishmania/crescimento & desenvolvimento , Leishmaniose , Proteínas Citotóxicas Formadoras de Poros/uso terapêutico , Animais , Humanos , Leishmaniose/tratamento farmacológico , Leishmaniose/metabolismo , Leishmaniose/patologia , Malária/tratamento farmacológico , Malária/metabolismo , Malária/patologia
4.
Int J Mol Sci ; 22(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540553

RESUMO

The polypeptide Pep19-2.5 (Aspidasept®) has been described to act efficiently against infection-inducing bacteria by binding and neutralizing their most potent toxins, i.e., lipopolysaccharides (LPS) and lipoproteins/peptides (LP), independent of the resistance status of the bacteria. The mode of action was described to consist of a primary Coulomb/polar interaction of the N-terminal region of Pep19-2.5 with the polar region of the toxins followed by a hydrophobic interaction of the C-terminal region of the peptide with the apolar moiety of the toxins. However, clinical development of Aspidasept as an anti-sepsis drug requires an in-depth characterization of the interaction of the peptide with the constituents of the human immune system and with other therapeutically relevant compounds such as antibiotics and non-steroidal anti-inflammatory drugs (NSAIDs). In this contribution, relevant details of primary and secondary pharmacodynamics, off-site targets, and immunogenicity are presented, proving that Pep19-2.5 may be readily applied therapeutically against the deleterious effects of a severe bacterial infection.


Assuntos
Anti-Infecciosos/farmacologia , Anti-Inflamatórios/farmacologia , Endotoxemia/tratamento farmacológico , Inflamação , Peptídeos/farmacologia , Animais , Anti-Infecciosos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Endotoxemia/imunologia , Humanos , Lipopolissacarídeos , Camundongos , Peptídeos/uso terapêutico
5.
Eur J Pharm Sci ; 158: 105687, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359480

RESUMO

Due to the increase in bacterial resistance to common antibiotics and the lack of newly approved drugs, antimicrobial peptides (AMP) have been shown to be an alternative to combat infections caused by drug-resistant organisms. In particular, synthetic anti-lipopolysaccharide peptides (SALP) with the lead structure Aspidasept (Pep19-2.5) display a high anti-inflammatory activity in vitro and in vivo systems of endotoxemia and bacteremia. This was found not only when SALP were applied systemically (i.e. against sepsis), but also in topical therapies aimed at treating wound infections. A further important application involves combating common pathologies of the gastrointestinal tract, such as chronic infections of the small intestine and the colon (e.g., Crohn's disease). For the necessary oral application, the active pharmaceutical ingredient (API), Aspidasept®, must be encapsulated to ensure its protection against the low pH and the hydrolytic enzymes of the gastrointestinal tract. Here, the encapsulation of Aspidasept in polysaccharide matrices, essentially alginate and pectin, was systematically investigated with a variety of physico-chemical techniques. Specifically, we characterized key features of the nanoparticles such as their sizes and size distributions, as well as their stability in different environments mimicking digestive fluids. Finally, we studied the release of the drug from the polysaccharide matrices and the ability of nanoparticles to neutralize endotoxemia in vitro. We showed that our lead formulations exert an optimum inhibitory activity on immune cells stimulated by lipopolysaccharide.


Assuntos
Peptídeos , Sepse , Antibacterianos , Anti-Inflamatórios , Humanos , Lipopolissacarídeos
6.
Biophys J ; 117(10): 1805-1819, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31676134

RESUMO

The activity of antimicrobial peptides (AMPs) has been investigated extensively using model membranes composed of phospholipids or lipopolysaccharides in aqueous environments. However, from a biophysical perspective, there is a large scientific interest regarding the direct interaction of membrane-active peptides with whole bacteria. Working with living bacteria limits the usability of experimental setups and the interpretation of the resulting data because of safety risks and the overlap of active and passive effects induced by AMPs. We killed or inactivated metabolic-active bacteria using γ-irradiation or sodium azide, respectively. Microscopy, flow cytometry, and SYTOX green assays showed that the cell envelope remained intact to a high degree at the minimal bactericidal dose. Furthermore, the tumor-necrosis-factor-α-inducing activity of the lipopolysaccharides and the chemical lipid composition was unchanged. Determining the binding capacity of AMPs to the bacterial cell envelope by calorimetry is difficult because of an overlapping of the binding heat and metabolic activities of the bacteria-induced by the AMPs. The inactivation of all active processes helps to decipher the complex thermodynamic information. From the isothermal titration calorimetry (ITC) results, we propose that the bacterial membrane potential (Δψ) is possibly an underestimated modulator of the AMP activity. The negative surface charge of the outer leaflet of the outer membrane of Gram-negative bacteria is already neutralized by peptide concentrations below the minimal inhibitory concentration. This proves that peptide aggregation on the bacterial membrane surface plays a decisive role in the degree of antimicrobial activity. This will not only enable many biophysical approaches for the investigation between bacteria and membrane-active peptides in the future but will also make it possible to compare biophysical parameters of active and inactive bacteria. This opens up new possibilities to better understand the active and passive interaction processes between AMPs and bacteria.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Raios gama , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Adsorção , Bactérias/ultraestrutura , Fenômenos Biofísicos , Membrana Celular/efeitos dos fármacos , Membrana Celular/efeitos da radiação , Membrana Celular/ultraestrutura , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fosfolipídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Termodinâmica
7.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1503-1513, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31163264

RESUMO

Outer membrane vesicles (OMVs) are secreted by Gram-negative bacteria and induce a stronger inflammatory response than pure LPS. After endocytosis of OMVs by macrophages, lipopolysaccharide (LPS) is released from early endosomes to activate its intracellular receptors followed by non-canonical inflammasome activation and pyroptosis, which are critically involved in sepsis development. Previously, we could show that the synthetic anti-endotoxin peptide Pep19-2.5 neutralizes inflammatory responses induced by intracellular LPS. Here, we aimed to investigate whether Pep19-2.5 is able to suppress cytoplasmic LPS-induced inflammation under more physiological conditions by using OMVs which naturally transfer LPS to the cytosol. Isothermal titration calorimetry revealed an exothermic reaction between Pep19-2.5 and Escherichia coli OMVs and the Limulus Amebocyte Lysate assay indicated a strong endotoxin blocking activity. In THP-1 macrophages and primary human macrophages Pep19-2.5 and polymyxin B reduced interleukin (IL)-1ß and tumor necrosis factor (TNF) release as well as pyroptosis induced by OMVs, while the Toll-like receptor 4 signaling inhibitor TAK-242 suppressed OMV-induced TNF and IL-1ß secretion, but not pyroptosis. Internalization of Pep19-2.5 was at least partially mediated by the P2X7 receptor in macrophages but not in monocytes. Additionally, a cell-dependent difference in the neutralization efficiency of Pep19-2.5 became evident in macrophages and monocytes, indicating a critical role for peptide-mediated IL-1ß secretion via the P2X7 receptor. In conclusion, we provide evidence that LPS-neutralizing peptides inhibit OMV-induced activation of the inflammasome/IL-1 axis and give new insights into the mechanism of peptide-mediated neutralization of cytoplasmic LPS suggesting an essential and cell-type specific role for the P2X7 receptor.


Assuntos
Anti-Inflamatórios/farmacologia , Membrana Externa Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Lipopolissacarídeos/antagonistas & inibidores , Macrófagos/efeitos dos fármacos , Peptídeos/farmacologia , Membrana Externa Bacteriana/imunologia , Linhagem Celular , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/microbiologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/microbiologia , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Piroptose/efeitos dos fármacos
8.
Microb Pathog ; 133: 103546, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31112769

RESUMO

With this study, we investigated the effect of synthetic antimicrobial peptides Pep19-2.5 and Pep194LF alone or in combination with antibiotics on S. mutans growth and biofilm formation/disruption. We also examined the cytotoxic effect of each peptide on monocytes. S. mutans was cultured in the presence of different concentrations of each peptide. We showed that Pep19-2.5 and Pep19-4LF were able to significantly (p ≤ 0.01) inhibit the growth of S. mutans. The synthetic peptides also decreased biofilm formation by S. mutans. Furthermore, both peptides reduced the viability of S. mutans in already formed biofilms. The combination of each peptide with antibiotics (penicillin/streptomycin, P/S) produced additive interactions which inhibited S. mutans growth and biofilm formation. Pep19-2.5 and Pep19-4LF were nontoxic, as they did not decrease monocyte viability and did not increase the lactate dehydrogenase activity of the exposed cells. In conclusion, synthetic peptides Pep19-2.5 and Pep19-4LF did inhibit S. mutans growth and its capacity to form biofilm. Both peptides were found to be nontoxic to monocytes. These data provide new insight into the efficacy of synthetic peptides Pep19-2.5 and Pep19-4LF against S. mutans. These peptides may thus be useful in controlling the adverse effects of this cariogenic bacterium in human.


Assuntos
Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Proteínas do Tecido Nervoso/farmacologia , Peptídeos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos , Biofilmes/crescimento & desenvolvimento , Sobrevivência Celular/efeitos dos fármacos , Combinação de Medicamentos , Sinergismo Farmacológico , Humanos , L-Lactato Desidrogenase/metabolismo , Testes de Sensibilidade Microbiana , Monócitos/efeitos dos fármacos , Proteínas do Tecido Nervoso/síntese química , Penicilinas/farmacologia , Peptídeos/síntese química , Streptococcus mutans/crescimento & desenvolvimento
9.
Adv Exp Med Biol ; 1117: 111-129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30980356

RESUMO

Antimicrobial peptides (AMPs) are in the focus of scientific research since the 1990s. In most cases, the main aim was laid on the design of AMP to kill bacteria effectively, with particular emphasis on broadband action and independency on antibiotic resistance. However, so far no approved drug on the basis of AMP has entered the market.Our approach of constructing AMP, called synthetic anti-lipopolysaccharide peptides (SALPs), on the basis of inhibiting the inflammatory action of lipopolysaccharide (LPS, endotoxin) from Gram-negative bacteria was focused on the neutralization of the decisive toxins. These are, beside LPS from Gram-negative bacteria, the lipoproteins (LP) from Gram-positive origin. Although some of the SALPs have an antibacterial action, the most important property is the high-affinity binding to LPS and LP, whether as constituent of the bacteria or in free form which prevents the damaging inflammation, that could otherwise lead to life-threatening septic shock. Most importantly, the SALP may inhibit inflammation independently of the resistance status of the bacteria, and so far the repeated use of the peptides apparently does not cause resistance of the attacking pathogens.In this chapter, an overview is given over the variety of possible applications in the field of fighting against severe bacterial infections, from the use in systemic infection/inflammation up to various topical applications such as anti-biofilm action and severe skin and soft tissue infections.


Assuntos
Antibacterianos/química , Moléculas com Motivos Associados a Patógenos/antagonistas & inibidores , Peptídeos/química , Infecções Bacterianas/tratamento farmacológico , Endotoxinas , Bactérias Gram-Negativas , Humanos , Lipopolissacarídeos
10.
FEBS J ; 286(8): 1576-1593, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30843356

RESUMO

Increasing failure of conventional antibiotics to combat bacterial infections requires the urgent development of new antibacterial drugs; a promising class of new drugs based on antimicrobial peptides. Here, we studied the molecular interaction of polycationic synthetic antilipopolysaccharide peptides (SALPs) with various gram-negative and gram-positive bacteria, including resistant strains. The analysis of antimicrobial activity by conventional techniques and atomic force microscopy showed a strict dependence on amino acid (aa) sequences, with the type of amino acid, its position within the primary structure, and the sequence length being critical parameters. By monitoring lipopolysaccharide (LPS)- or bacteria-induced cytokine production in human mononuclear cells and whole blood, we found a direct link between the binding of the lead compound Pep19-2.5 to Salmonella enterica and the anti-inflammatory activity of the peptide. Thermodynamic analysis of Pep19-2.5 binding to the bacterial cell envelope showed an exothermic reaction with saturation characteristics, whereas small-angle X-ray scattering data indicated a direct attachment of Pep19-2.5 to the bacterial cell envelope. This binding preferentially takes place to the LPS outer monolayer, as evidenced by the change in the LPS acyl chain and phosphate vibrational bands seen by Fourier-transform infrared spectroscopy. We report here that the anti-inflammatory activity of Pep19-2.5 is not only connected with neutralization of cell-free bacterial toxins but also with a direct binding of the peptide to the outer leaflet of the bacterial outer membrane.


Assuntos
Antibacterianos/farmacologia , Toxinas Bacterianas/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Calorimetria , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/microbiologia , Radioisótopos de Césio/toxicidade , Citocinas/metabolismo , Citometria de Fluxo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Lipopolissacarídeos/farmacologia , Testes de Sensibilidade Microbiana , Microscopia de Força Atômica , Peptídeos/síntese química , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/metabolismo , Salmonella enterica/efeitos da radiação , Espalhamento a Baixo Ângulo , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
Front Immunol ; 9: 1704, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30093904

RESUMO

The most potent cell wall-derived inflammatory toxins ("pathogenicity factors") of Gram-negative and -positive bacteria are lipopolysaccharides (LPS) (endotoxins) and lipoproteins (LP), respectively. Despite the fact that the former signals via toll-like receptor 4 (TLR4) and the latter via TLR2, the physico-chemistry of these compounds exhibits considerable similarity, an amphiphilic molecule with a polar and charged backbone and a lipid moiety. While the exterior portion of the LPS (i.e., the O-chain) represents the serologically relevant structure, the inner part, the lipid A, is responsible for one of the strongest inflammatory activities known. In the last years, we have demonstrated that antimicrobial peptides from the Pep19-2.5 family, which were designed to bind to LPS and LP, act as anti-inflammatory agents against sepsis and endotoxic shock caused by severe bacterial infections. We also showed that this anti-inflammatory activity requires specific interactions of the peptides with LPS and LP leading to exothermic reactions with saturation characteristics in calorimetry assays. Parallel to this, peptide-mediated neutralization of LPS and LP involves changes in various physical parameters, including both the gel to liquid crystalline phase transition of the acyl chains and the three-dimensional aggregate structures of the toxins. Furthermore, the effectivity of neutralization of pathogenicity factors by peptides was demonstrated in several in vivo models together with the finding that a peptide-based therapy sensitizes bacteria (also antimicrobial resistant) to antibiotics. Finally, a significant step in the understanding of the broad anti-inflammatory function of Pep19-2.5 was the demonstration that this compound is able to block the intracellular endotoxin signaling cascade.


Assuntos
Anti-Inflamatórios/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/etiologia , Lipopolissacarídeos/efeitos adversos , Lipoproteínas/efeitos adversos , Peptídeos/uso terapêutico , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Endotoxinas/efeitos adversos , Endotoxinas/antagonistas & inibidores , Endotoxinas/química , Humanos , Inflamação/metabolismo , Peptídeos/farmacologia
12.
Br J Pharmacol ; 175(17): 3581-3593, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29947028

RESUMO

BACKGROUND AND PURPOSE: Wound healing is a complex process that is essential to provide skin homeostasis. Infection with pathogenic bacteria such as Staphylococcus aureus can lead to chronic wounds, which are challenging to heal. Previously, we demonstrated that the antimicrobial endotoxin-neutralizing peptide Pep19-2.5 promotes artificial wound closure in keratinocytes. Here, we investigated the mechanism of peptide-induced cell migration and if Pep19-2.5 accelerates wound closure in vivo. EXPERIMENTAL APPROACH: Cell migration was examined in HaCaT keratinocytes and P2X7 receptor-overexpressing HEK293 cells using the wound healing scratch assay. The protein expression of phosphorylated ERK1/2, ATP release, calcium influx and mitochondrial ROS were analysed to characterize Pep19-2.5-mediated signalling. For in vivo studies, female BALB/c mice were wounded and infected with methicillin-resistant S. aureus (MRSA) or left non-infected and treated topically with Pep19-2.5 twice daily for 6 days. KEY RESULTS: Specific P2X7 receptor antagonists inhibited Pep19-2.5-induced cell migration and ERK1/2 phosphorylation in keratinocytes and P2X7 receptor-transfected HEK293 cells. ATP release was not increased by Pep19-2.5; however, ATP was required for cell migration. Pep19-2.5 increased cytosolic calcium and mitochondrial ROS, which were involved in peptide-induced migration and ERK1/2 phosphorylation. In both non-infected and MRSA-infected wounds, the wound diameter was reduced already at day 2 post-wounding in the Pep19-2.5-treated groups compared to vehicle, and remained decreased until day 6. CONCLUSIONS AND IMPLICATIONS: Our data suggest the potential application of Pep19-2.5 in the treatment of non-infected and S. aureus-infected wounds and provide insights into the mechanism involved in Pep19-2.5-induced wound healing.


Assuntos
Antibacterianos/farmacologia , Endotoxinas/antagonistas & inibidores , Queratinócitos/efeitos dos fármacos , Peptídeos/farmacologia , Agonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Linhagem Celular Transformada , Feminino , Células HEK293 , Humanos , Queratinócitos/citologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Eur J Pharm Sci ; 115: 240-247, 2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29337217

RESUMO

In previous years, we developed anti-infective drugs based on antimicrobial peptides (AMPs), which have been shown to effectively block severe infections and inflammation in vitro as well as in vivo. Besides systemic application, the occurrence of severe local infections necessitates a topical application for example in the case of severe skin and soft tissue infections (SSTI). Recent investigations show that the synthetic anti-lipopolysaccharide peptide (SALP) Pep19-2.5 (Aspidasept® I) and a variant called Pep19-4LF (Aspidasept® II) are able to supress inflammation reactions also in keratinocytes, Langerhans cells, and dendritic cells from the skin. For topical application, a possible formulation represents the drug dispersed into a pharmaceutical cream (DAC base cream). Here, we present investigations on the stability of the peptides using this formulation in dependence on time, which includes the evaluation of the extraction procedure, the quantitative analysis of the peptides after extraction, its sensitivity to protease degradation and its ability to maintain activity against LPS-induced inflammation in vitro. We have developed an extraction procedure for the peptides with an optimum yield and showed that Pep19-2.5 is present as a dimer after extraction from the cream, whereas Pep19-4LF retains its monomeric form. Both peptides show no degradation by chymotrypsin after extraction for at least 1 h, which is indicative for an attachment of constituents of the base cream, inhibiting the cutting into peptidic part structures. The extracted peptides and in particular the dimeric Pep19-2.5 are still able to inhibit the LPS-induced inflammation reaction in human mononuclear cells.


Assuntos
Anti-Inflamatórios/química , Pomadas/química , Peptídeos/química , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Química Farmacêutica/métodos , Estabilidade de Medicamentos , Humanos , Inflamação/tratamento farmacológico , Queratinócitos
14.
Pharmacogenomics J ; 18(4): 546-555, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29302041

RESUMO

Injections of a crude fetal sheep liver extract (FSLE) containing fetal hemoglobin, MPLA, and glutathione (GSSH) reversed cytokine changes in aged mice. To investigate the role of fetal hemoglobin we derived mice with homzygous deletions for either of the two major ßchains, HgbßmaKO or HgbßmiKO. Hgbßmi is the most prominent fetal Hgbß chain, with Hgbßma more prominent in adult mice. Mice lacking another fetal Hgb chain, HgbεKO, died in utero. CHO cells transfected with cloned Hgb chains were used to produce proteins for preparation of rabbit heteroantibodes. Splenocytes from HgbßmaKO mice stimulated in vitro with Conconavalin A showed a higher IL-2:IL-4 ratio than cells from HgbßmiKO mice. Following immunization in vivo with ovalbumin in alum, HgbßmaKO mice produced less IgE than HgbßmiKO mice, suggesting that in the absence of HgbßmiKO mice had a predeliction to heightened allergic-type responses. Using CHO cells transfected with cloned Hgb chains, we found that only the fetal Hgb chain, Hgbε, was secreted at high levels. Secretion of Hgbßma or Hgbßmi chains was seen only after genetic mutation to introduce the two N-linked glycosylation sites present in Hgbε, but absent in the Hgbß chains. We speculated that a previously unanticipated biological function of a naturally secreted fetal Hgb chain may be partly responsible for the effects reported following injection of animals with fetal, not adult, Hgb. Mice receiving injections of rabbit anti-Hgbε but not either anti-Hgbßma or anti-Hgbßmi from day 14 gestation also showed a bias towards the higher IL-2:IL-4 ratios seen in HgbßmiKO mice.


Assuntos
Citocinas/imunologia , Hemoglobina Fetal/imunologia , Hemoglobinas/imunologia , Imunidade Inata , Animais , Células CHO , Cricetinae , Cricetulus , Hemoglobina Fetal/administração & dosagem , Feto/imunologia , Glutationa/imunologia , Hemoglobinas/genética , Humanos , Extratos Hepáticos/administração & dosagem , Extratos Hepáticos/imunologia , Camundongos , Camundongos Knockout , Ovinos/imunologia , Baço/citologia
15.
Ann Surg ; 268(2): 348-356, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28288070

RESUMO

OBJECTIVE: To evaluate (1) levels of the host-defense/antimicrobial peptide LL-37 in patients with trauma and hemorrhagic shock (HS) and (2) the effects of a synthetic host-defense peptide; Pep19-4LF on multiple organ failure (MOF) associated with HS. BACKGROUND: HS is a common cause of death in severely injured patients. There is no specific therapy that reduces HS-associated MOF. METHODS: (1) LL-37 was measured in 47 trauma/HS patients admitted to an urban major trauma center. (2) Male Wistar rats were submitted to HS (90 min, target mean arterial pressure: 27-32 mm Hg) or sham operation. Rats were treated with Pep19-4LF [66 (n = 8) or 333 µg/kg ·â€Šh (n = 8)] or vehicle (n = 12) for 4 hours following resuscitation. RESULTS: Plasma LL-37 was 12-fold higher in patients with trauma/HS compared to healthy volunteers. HS rats treated with Pep19-4LF (high dose) had a higher mean arterial pressure at the end of the 4-hour resuscitation period (79 ±â€Š4 vs 54 ±â€Š5 mm Hg) and less renal dysfunction, liver injury, and lung inflammation than HS rats treated with vehicle. Pep19-4LF enhanced (kidney/liver) the phosphorylation of (1) protein kinase B and (2) endothelial nitric oxide synthase. Pep19-4LF attenuated the HS-induced (1) translocation of p65 from cytosol to nucleus, (2) phosphorylation of IκB kinase on Ser, and (3) phosphorylation of IκBα on Ser resulting in inhibition of nuclear factor kappa B and formation of proinflammatory cytokines. Pep19-4LF prevented the release of tumor necrosis factor alpha caused by heparan sulfate in human mononuclear cells by binding to this damage-associated molecular pattern. CONCLUSIONS: Trauma-associated HS results in release of LL-37. The synthetic host-defense/antimicrobial peptide Pep19-4LF attenuates the organ injury/dysfunction associated with HS.


Assuntos
Anti-Infecciosos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/sangue , Insuficiência de Múltiplos Órgãos/prevenção & controle , Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Choque Hemorrágico/tratamento farmacológico , Ferimentos e Lesões/complicações , Animais , Biomarcadores/sangue , Estudos de Casos e Controles , Terapia Combinada , Humanos , Masculino , Insuficiência de Múltiplos Órgãos/etiologia , Ratos , Ratos Wistar , Ressuscitação , Choque Hemorrágico/sangue , Choque Hemorrágico/complicações , Choque Hemorrágico/diagnóstico , Resultado do Tratamento , Catelicidinas
16.
Int J Mol Sci ; 18(12)2017 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-29258200

RESUMO

Lipopolysaccharides (LPS, endotoxin) are complex and indispensable components of the outer membrane of most Gram-negative bacteria. They represent stimuli for many biological effects with pathophysiological character. Recombinant therapeutic proteins that are manufactured using biotechnological processes are prone to LPS contaminations due to their ubiquitous occurrence. The maximum endotoxin load of recombinant therapeutic proteins must be below the pyrogenic threshold. Certain matrices that are commonly used for recombinant therapeutic proteins show a phenomenon called "Low Endotoxin Recovery (LER)". LER is defined as the loss of detectable endotoxin activity over time using compendial Limulus amebocyte lysate (LAL) assays when undiluted products are spiked with known amount of endotoxin standards. Because LER poses potential risks that endotoxin contaminations in products may be underestimated or undetected by the LAL assay, the United States (U.S.) Food and Drug Administration's (FDA's) Center for Drug Evaluation and Research (CDER) has recently started requesting that companies conduct endotoxin spike/hold recovery studies to determine whether a given biological product causes LER. Here, we have performed an analysis of different LPS preparations with relevant detergents studying their acyl chain phase transition, their aggregate structures, their size distributions, and binding affinity with a particular anti-endotoxin peptide, and correlating it with the respective data in the macrophage activation test. In this way, we have worked out biophysical parameters that are important for an understanding of LER.


Assuntos
Bioensaio/métodos , Lipopolissacarídeos/química , Animais , Endotoxinas/química , Bactérias Gram-Negativas/química , Caranguejos Ferradura/química , Proteínas de Membrana/química
17.
Exp Mol Med ; 49(6): e345, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28620220

RESUMO

Sepsis, which is induced by severe bacterial infections, is a major cause of death worldwide, and therapies combating the disease are urgently needed. Because many drugs have failed in clinical trials despite their efficacy in mouse models, the development of reliable animal models of sepsis is in great demand. Several studies have suggested that rabbits reflect sepsis-related symptoms more accurately than mice. In this study, we evaluated a rabbit model of acute sepsis caused by the intravenous inoculation of Salmonella enterica. The model reproduces numerous symptoms characteristic of human sepsis including hyperlactatemia, hyperglycemia, leukopenia, hypothermia and the hyperproduction of several pro-inflammatory cytokines. Hence, it was chosen to investigate the proposed ability of Pep19-2.5-an anti-endotoxic peptide with high affinity to lipopolysaccharide and lipoprotein-to attenuate sepsis-associated pathologies in combination with an antibiotic (ceftriaxone). We demonstrate that a combination of Pep19-2.5 and ceftriaxone administered intravenously to the rabbits (1) kills bacteria and eliminates bacteremia 30 min post challenge; (2) inhibits Toll-like receptor 4 agonists in serum 90 min post challenge; (3) reduces serum levels of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor α); and (4) reverts to hypothermia and gives rise to temperature values indistinguishable from basal levels 330 min post challenge. The two components of the combination displayed synergism in some of these activities, and Pep19-2.5 notably counteracted the endotoxin-inducing potential of ceftriaxone. Thus, the combination therapy of Pep19-2.5 and ceftriaxone holds promise as a candidate for human sepsis therapy.


Assuntos
Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Ceftriaxona/uso terapêutico , Peptídeos/uso terapêutico , Salmonella enterica/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Ceftriaxona/administração & dosagem , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Células HEK293 , Humanos , Hiperlactatemia , Hipotermia , Interleucina-6/sangue , Leucopenia , Lipopolissacarídeos/sangue , Masculino , Peptídeos/administração & dosagem , Coelhos , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/sangue , Fator de Necrose Tumoral alfa/sangue
18.
Biochem Pharmacol ; 140: 64-72, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28539262

RESUMO

Toll-like receptor (TLR) 4-independent recognition of lipopolysaccharide (LPS) in the cytosol by inflammatory caspases leads to non-canonical inflammasome activation and induction of IL-1 secretion and pyroptosis. The discovery of this novel mechanism has potential implications for the development of effective drugs to treat sepsis since LPS-mediated hyperactivation of caspases is critically involved in endotoxic shock. Previously, we demonstrated that Pep19-2.5, a synthetic anti-endotoxin peptide, efficiently neutralises pathogenicity factors of Gram-negative and Gram-positive bacteria and protects against sepsis in vivo. Here, we report that Pep19-2.5 inhibits the effects of cytoplasmic LPS in human myeloid cells and keratinocytes. In THP-1 monocytes and macrophages, the peptide strongly reduced secretion of IL-1ß and LDH induced by intracellular LPS. In contrast, the TLR4 signaling inhibitor TAK-242 abrogates LPS-induced TNF and IL-1ß secretion, but not pyroptotic cell death. Furthermore, Pep19-2.5 suppressed LPS-induced HMGB-1 production and caspase-1 activation in THP-1 monocytes. Consistent with this observation, we found impaired IL-1ß and IL-1α release in LPS-stimulated primary monocytes in the presence of Pep19-2.5 and reduced LDH release and IL-1B and IL-1A expression in LPS-transfected HaCaT keratinocytes. Additionally, Pep19-2.5 completely abolished IL-1ß release induced by LPS/ATP in macrophages via canonical inflammasome activation. In conclusion, we provide evidence that anti-endotoxin peptides inhibit the inflammasome/IL-1 axis induced by cytoplasmic LPS sensing in myeloid cells and keratinocytes and activation of the classical inflammasome by LPS/ATP which may contribute to the protection against bacterial sepsis and skin infections with intracellular Gram-negative bacteria.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inflamassomos/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Peptídeos/farmacologia , Piroptose/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/química , Linhagem Celular Transformada , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Endotoxinas/antagonistas & inibidores , Endotoxinas/toxicidade , Humanos , Inflamassomos/imunologia , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Lipopolissacarídeos/toxicidade , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Peptídeos/química , Sulfonamidas/farmacologia , Receptor 4 Toll-Like/metabolismo
19.
Sci Rep ; 7: 43134, 2017 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-28233788

RESUMO

Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step "Catch-Load-Launch" manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic "robotic pump". Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.


Assuntos
Forma Celular , Eritrócitos/citologia , Microfluídica/métodos , Trifosfato de Adenosina/metabolismo , Citoesqueleto/metabolismo , Eritrócitos/fisiologia , Humanos , Microfluídica/instrumentação , Fatores de Tempo
20.
Sci Rep ; 6: 37277, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853260

RESUMO

An impairment of cardiac function is a key feature of the cardiovascular failure associated with sepsis. Although there is some evidence that suppression of sarcoplasmic reticulum Ca2+-ATP-ase (SERCA2) contributes to septic cardiomyopathy, it is not known whether prevention of the down-regulation of SERCA2 improves outcome in sepsis. Thus, we investigated whether the administration of the synthetic antimicrobial peptide Pep2.5 may attenuate the cardiac dysfunction in murine polymicrobial sepsis through regulating SERCA2 expression. We show here for the first time that the infusion of Pep2.5 reduces the impaired systolic and diastolic contractility and improves the survival time in polymicrobial sepsis. Preservation of cardiac function in sepsis by Pep2.5 is associated with prevention of the activation of NF-κB and activation of the Akt/eNOS survival pathways. Most notably, Pep2.5 prevented the down-regulation of SERCA2 expression in a) murine heart samples obtained from mice with sepsis and b) in cardiomyocytes exposed to serum from septic shock patients. Thus, we speculate that Pep2.5 may be able to prevent down-regulation of cardiac SERCA2 expression in patients with sepsis, which, in turn, may improve cardiac function and outcome in these patients.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Cardiomiopatias/tratamento farmacológico , Regulação para Baixo/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Sepse/tratamento farmacológico , Animais , Peptídeos Catiônicos Antimicrobianos/química , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sepse/metabolismo , Sepse/patologia , Sepse/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA