Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(6): 111629, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351392

RESUMO

Platinum (Pt) compounds such as oxaliplatin are among the most commonly prescribed anti-cancer drugs. Despite their considerable clinical impact, the molecular basis of platinum cytotoxicity and cancer specificity remain unclear. Here we show that oxaliplatin, a backbone for the treatment of colorectal cancer, causes liquid-liquid demixing of nucleoli at clinically relevant concentrations. Our data suggest that this biophysical defect leads to cell-cycle arrest, shutdown of Pol I-mediated transcription, and ultimately cell death. We propose that instead of targeting a single molecule, oxaliplatin preferentially partitions into nucleoli, where it modifies nucleolar RNA and proteins. This mechanism provides a general approach for drugging the increasing number of cellular processes linked to biomolecular condensates.


Assuntos
Antineoplásicos , Platina , Oxaliplatina/farmacologia , Platina/metabolismo , Nucléolo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , RNA Polimerase I/metabolismo
2.
Cell ; 183(6): 1572-1585.e16, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33157040

RESUMO

Cellular functioning requires the orchestration of thousands of molecular interactions in time and space. Yet most molecules in a cell move by diffusion, which is sensitive to external factors like temperature. How cells sustain complex, diffusion-based systems across wide temperature ranges is unknown. Here, we uncover a mechanism by which budding yeast modulate viscosity in response to temperature and energy availability. This "viscoadaptation" uses regulated synthesis of glycogen and trehalose to vary the viscosity of the cytosol. Viscoadaptation functions as a stress response and a homeostatic mechanism, allowing cells to maintain invariant diffusion across a 20°C temperature range. Perturbations to viscoadaptation affect solubility and phase separation, suggesting that viscoadaptation may have implications for multiple biophysical processes in the cell. Conditions that lower ATP trigger viscoadaptation, linking energy availability to rate regulation of diffusion-controlled processes. Viscoadaptation reveals viscosity to be a tunable property for regulating diffusion-controlled processes in a changing environment.


Assuntos
Metabolismo Energético , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Temperatura , Adaptação Fisiológica , Trifosfato de Adenosina/metabolismo , Difusão , Glicogênio/metabolismo , Homeostase , Modelos Biológicos , Solubilidade , Trealose , Viscosidade
3.
PLoS One ; 15(1): e0227841, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31945107

RESUMO

The Ribosome-associated Quality Control (RQC) pathway co-translationally marks incomplete polypeptides from stalled translation with two signals that trigger their proteasome-mediated degradation. The E3 ligase Ltn1 adds ubiquitin and Rqc2 directs the large ribosomal subunit to append carboxy-terminal alanine and threonine residues (CAT tails). When excessive amounts of incomplete polypeptides evade Ltn1, CAT-tailed proteins accumulate and can self-associate into aggregates. CAT tail aggregation has been hypothesized to either protect cells by sequestering potentially toxic incomplete polypeptides or harm cells by disrupting protein homeostasis. To distinguish between these possibilities, we modulated CAT tail aggregation in Saccharomyces cerevisiae with genetic and chemical tools to analyze CAT tails in aggregated and un-aggregated states. We found that enhancing CAT tail aggregation induces proteotoxic stress and antagonizes degradation of CAT-tailed proteins, while inhibiting aggregation reverses these effects. Our findings suggest that CAT tail aggregation harms RQC-compromised cells and that preventing aggregation can mitigate this toxicity.


Assuntos
Peptídeos/genética , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Ribossomos/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligases/genética , Alanina/genética , DNA Polimerase III/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , RNA de Transferência/genética , Saccharomyces cerevisiae/genética , Treonina/genética , Ubiquitina/genética
4.
Nat Struct Mol Biol ; 26(6): 450-459, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31133701

RESUMO

Stalled translation produces incomplete, ribosome-tethered polypeptides that the ribosome-associated quality control (RQC) pathway targets for degradation via the E3 ubiquitin ligase Ltn1. During this process, the protein Rqc2 and the large ribosomal subunit elongate stalled polypeptides with carboxy-terminal alanine and threonine residues (CAT tails). Failure to degrade CAT-tailed proteins disrupts global protein homeostasis, as CAT-tailed proteins can aggregate and sequester chaperones. Why cells employ such a potentially toxic process during RQC is unclear. Here, we developed quantitative techniques to assess how CAT tails affect stalled polypeptide degradation in Saccharomyces cerevisiae. We found that CAT tails enhance the efficiency of Ltn1 in targeting structured polypeptides, which are otherwise poor Ltn1 substrates. If Ltn1 fails to ubiquitylate those stalled polypeptides or becomes limiting, CAT tails act as degrons, marking proteins for proteasomal degradation off the ribosome. Thus, CAT tails functionalize the carboxy termini of stalled polypeptides to drive their degradation on and off the ribosome.


Assuntos
Peptídeos/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Alanina/química , Alanina/metabolismo , Peptídeos/química , Biossíntese de Proteínas , Proteólise , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Treonina/química , Treonina/metabolismo
5.
RNA ; 23(5): 798-810, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28223409

RESUMO

Premature arrest of protein synthesis within the open reading frame elicits a protective response that degrades the incomplete nascent chain. In this response, arrested 80S ribosomes are split into their large and small subunits, allowing assembly of the ribosome quality control complex (RQC), which targets nascent chains for degradation. How the cell recognizes arrested nascent chains among the vast pool of actively translating polypeptides is poorly understood. We systematically examined translation arrest and modification of nascent chains in Saccharomyces cerevisiae to characterize the steps that couple arrest to RQC targeting. We focused our analysis on two poorly understood 80S ribosome-binding proteins previously implicated in the response to failed translation, Asc1 and Hel2, as well as a new component of the pathway, Slh1, that we identified here. We found that premature arrest at ribosome stalling sequences still occurred robustly in the absence of Asc1, Hel2, and Slh1. However, these three factors were required for the RQC to modify the nascent chain. We propose that Asc1, Hel2, and Slh1 target arresting ribosomes and that this targeting event is a precondition for the RQC to engage the incomplete nascent chain and facilitate its degradation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , RNA Helicases DEAD-box/fisiologia , Proteínas de Ligação ao GTP/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
6.
Nat Struct Mol Biol ; 23(1): 7-15, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26733220

RESUMO

Protein synthesis by the ribosome can fail for numerous reasons including faulty mRNA, insufficient availability of charged tRNAs and genetic errors. All organisms have evolved mechanisms to recognize stalled ribosomes and initiate pathways for recycling, quality control and stress signaling. Here we review the discovery and molecular dissection of the eukaryotic ribosome-associated quality-control pathway for degradation of nascent polypeptides arising from interrupted translation.


Assuntos
Células Eucarióticas/fisiologia , Biossíntese de Proteínas , Proteólise , Ribossomos/metabolismo , Células Eucarióticas/metabolismo
7.
Cell ; 151(5): 1042-54, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178123

RESUMO

The conserved transcriptional regulator heat shock factor 1 (Hsf1) is a key sensor of proteotoxic and other stress in the eukaryotic cytosol. We surveyed Hsf1 activity in a genome-wide loss-of-function library in Saccaromyces cerevisiae as well as ~78,000 double mutants and found Hsf1 activity to be modulated by highly diverse stresses. These included disruption of a ribosome-bound complex we named the Ribosome Quality Control Complex (RQC) comprising the Ltn1 E3 ubiquitin ligase, two highly conserved but poorly characterized proteins (Tae2 and Rqc1), and Cdc48 and its cofactors. Electron microscopy and biochemical analyses revealed that the RQC forms a stable complex with 60S ribosomal subunits containing stalled polypeptides and triggers their degradation. A negative feedback loop regulates the RQC, and Hsf1 senses an RQC-mediated translation-stress signal distinctly from other stresses. Our work reveals the range of stresses Hsf1 monitors and elucidates a conserved cotranslational protein quality control mechanism.


Assuntos
Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Choque Térmico/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína com Valosina
8.
Cell ; 131(7): 1327-39, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-18160041

RESUMO

Deviations in basal Ca2+ levels interfere with receptor-mediated Ca2+ signaling as well as endoplasmic reticulum (ER) and mitochondrial function. While defective basal Ca2+ regulation has been linked to various diseases, the regulatory mechanism that controls basal Ca2+ is poorly understood. Here we performed an siRNA screen of the human signaling proteome to identify regulators of basal Ca2+ concentration and found STIM2 as the strongest positive regulator. In contrast to STIM1, a recently discovered signal transducer that triggers Ca2+ influx in response to receptor-mediated depletion of ER Ca2+ stores, STIM2 activated Ca2+ influx upon smaller decreases in ER Ca2+. STIM2, like STIM1, caused Ca2+ influx via activation of the plasma membrane Ca2+ channel Orai1. Our study places STIM2 at the center of a feedback module that keeps basal cytosolic and ER Ca2+ concentrations within tight limits.


Assuntos
Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Canais de Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Células Cultivadas , Retroalimentação Fisiológica , Células HeLa , Humanos , Ativação do Canal Iônico , Proteínas de Membrana/genética , Microscopia de Fluorescência , Proteínas de Neoplasias/metabolismo , Proteína ORAI1 , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA