Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 204(3): 921-930, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168727

RESUMO

Idiopathic multicentric Castleman disease (iMCD) is a rare haematological disorder characterized by generalized lymphadenopathy with atypical histopathological features and systemic inflammation caused by a cytokine storm involving interleukin-6 (IL-6). Three clinical subtypes are recognized: thrombocytopenia, anasarca, fever, renal dysfunction, organomegaly (iMCD-TAFRO); idiopathic plasmacytic lymphadenopathy (iMCD-IPL), involving thrombocytosis and hypergammaglobulinaemia; and iMCD-not otherwise specified (iMCD-NOS), which includes patients who do not meet criteria for the other subtypes. Disease pathogenesis is poorly understood, with potential involvement of infectious, clonal and/or autoimmune mechanisms. To better characterize iMCD clinicopathology and gain mechanistic insights into iMCD, we analysed complete blood counts, other clinical laboratory values and blood smear morphology among 63 iMCD patients grouped by clinical subtype. Patients with iMCD-TAFRO had large platelets, clinical severity associated with lower platelet counts and transfusion-resistant thrombocytopenia, similar to what is observed with immune-mediated destruction of platelets in immune thrombocytopenic purpura. Conversely, elevated platelet counts in iMCD-IPL were associated with elevated IL-6 and declined following anti-IL-6 therapy. Our data suggest that autoimmune mechanisms contribute to the thrombocytopenia in at least a portion of iMCD-TAFRO patients whereas IL-6 drives thrombocytosis in iMCD-IPL, and these mechanisms likely contribute to disease pathogenesis.


Assuntos
Hiperplasia do Linfonodo Gigante , Linfadenopatia , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombocitose , Humanos , Interleucina-6 , Hiperplasia do Linfonodo Gigante/patologia , Púrpura Trombocitopênica Idiopática/complicações , Trombocitopenia/patologia
3.
Blood Adv ; 7(21): 6652-6664, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37656441

RESUMO

Idiopathic multicentric Castleman disease (iMCD) is a rare hematologic disorder with an unknown etiology. Clinical presentation is heterogeneous, ranging from mild constitutional symptoms with lymphadenopathy to life-threatening multiorgan dysfunction. International, consensus treatment guidelines developed in 2018 relied upon a limited number of clinical trials and small case series; however, to our knowledge, real-world performance of these recommendations has not been subsequently studied. Siltuximab, a monoclonal antibody against interleukin 6 (IL6), is approved for the treatment of iMCD and recommended first-line, and tocilizumab, a monoclonal antibody directed against the IL6 receptor, is recommended when siltuximab is unavailable. Chemotherapy, rituximab, and immunomodulators are recommended as second- and third-line treatments based on limited evidence. Corticosteroid monotherapy is used by clinicians, although not recommended. Here, we draw upon the ACCELERATE Natural History Registry to inventory regimens and evaluate regimen response for 102 expert-confirmed iMCD cases. Siltuximab with/without (w/wo) corticosteroids was associated with a 52% response, whereas corticosteroid monotherapy was associated with a 3% response. Anti-IL6-directed therapy with siltuximab or tocilizumab demonstrated better response and more durability than was observed with rituximab w/wo corticosteroids. Cytotoxic chemotherapy was associated with a 52% response and was predominantly administered in patients characterized by thrombocytopenia, anasarca, fever, renal failure/reticulin fibrosis, and organomegaly. Our results provide evidence in support of current recommendations to administer anti-IL6 as first-line treatment, to administer cytotoxic chemotherapy in patients with severe refractory disease, and to limit corticosteroid monotherapy. Evidence remains limited for effective agents for patients who are refractory to anti-IL6-directed therapy. This trial was registered at www.clinicaltrials.gov as #NCT02817997.


Assuntos
Hiperplasia do Linfonodo Gigante , Humanos , Rituximab/uso terapêutico , Hiperplasia do Linfonodo Gigante/diagnóstico , Hiperplasia do Linfonodo Gigante/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Corticosteroides/uso terapêutico
5.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526083

RESUMO

Allogeneic hematopoietic cell transplantation can cure patients with high-risk leukemia through graft-versus-leukemia (GVL) effects, the process by which malignant leukemic cells are cleared by donor-derived immune cells from the graft. The problem of harnessing GVL effects while controlling inflammation and host-organ damage linked with graft-versus-host disease (GVHD) has been the most formidable hurdle facing allogeneic hematopoietic cell transplantation. This powerful, curative-intent therapy remains among the most toxic treatments in the hematologist's armamentarium due to the combined risks of GVHD-related morbidity, infections, and leukemia relapse. In this issue of the JCI, Li, Wang, et al. report that T cell Stat3 deficiency can extricate GVL effects from GVHD through tissue-specific programmed death-ligand 1/programmed cell death protein 1-dependent (PD-L1/PD-1-dependent) bioenergetic alterations that blunt harmful T cell effects in GVHD target organs, while preserving their beneficial antitumor activity in lymphohematopoietic tissues.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia , Humanos , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/terapia , Leucemia/patologia , Linfócitos T , Efeito Enxerto vs Leucemia , Fator de Transcrição STAT3/genética
6.
Eur J Immunol ; 53(9): e2250362, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37366295

RESUMO

Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.


Assuntos
Bancos de Espécimes Biológicos , Criopreservação , Humanos , Linfócitos , Linfonodos/patologia , Células Estromais
7.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798373

RESUMO

Non-hematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils, lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable non-hematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LNSC cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and lymph nodes. The presence and spatial distribution of transcriptionally defined cell types was confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSC in human disease.

9.
Life Sci Alliance ; 5(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34645668

RESUMO

Telomerase extends chromosome ends in somatic and germline stem cells to ensure continued proliferation. Mutations in genes critical for telomerase function result in telomeropathies such as dyskeratosis congenita, frequently resulting in spontaneous bone marrow failure. A dyskeratosis congenita mutation in TPP1 (K170∆) that specifically compromises telomerase recruitment to telomeres is a valuable tool to evaluate telomerase-dependent telomere length maintenance in mice. We used CRISPR-Cas9 to generate a mouse knocked in for the equivalent of the TPP1 K170∆ mutation (TPP1 K82∆) and investigated both its hematopoietic and germline compartments in unprecedented detail. TPP1 K82∆ caused progressive telomere erosion with increasing generation number but did not induce steady-state hematopoietic defects. Strikingly, K82∆ caused mouse infertility, consistent with gross morphological defects in the testis and sperm, the appearance of dysfunctional seminiferous tubules, and a decrease in germ cells. Intriguingly, both TPP1 K82∆ mice and previously characterized telomerase knockout mice show no spontaneous bone marrow failure but rather succumb to infertility at steady-state. We speculate that telomere length maintenance contributes differently to the evolutionary fitness of humans and mice.


Assuntos
Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Células Germinativas/metabolismo , Hematopoese/genética , Mutação , Proteínas de Ligação a Telômeros/genética , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , Fertilidade/genética , Edição de Genes , Homozigoto , Humanos , Linfopoese/genética , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Contagem de Espermatozoides , Relação Estrutura-Atividade
10.
Cancer ; 126(9): 1837-1855, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073653

RESUMO

Hematopoietic stem cell transplantation (HCT) has been an integral component in the treatment of many hematologic malignancies. Since the development of HCT nearly 50 years ago, the role of this modality has evolved as newer treatment approaches have been developed and integrated into the standard of care. In the last decade, novel and highly active targeted therapies and immunotherapies have been approved for many hematologic malignancies, raising the question of whether HCT continues to retain its prominent role in the treatment paradigms of various hematologic malignancies. In this review, the authors have described the current role of autologous and allogeneic HCT in the treatment of patients with acute leukemias, aggressive B-cell lymphomas, and multiple myeloma and discussed how novel targeted therapies and immunotherapies have changed the potential need, timing, and goal of HCT in patients with these diseases.


Assuntos
Neoplasias Hematológicas/terapia , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunoterapia , Medicina de Precisão , Padrão de Cuidado , Transplante Autólogo , Transplante Homólogo
11.
J Clin Invest ; 126(1): 207-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26649979

RESUMO

Heparan sulfate (HS) is an essential component of the extracellular matrix (ECM), which serves as a barrier to tumor invasion and metastasis. Heparanase promotes tumor growth by cleaving HS chains of proteoglycan and releasing HS-bound angiogenic growth factors and facilitates tumor invasion and metastasis by degrading the ECM. HS mimetics, such as PG545, have been developed as antitumor agents and are designed to suppress angiogenesis and metastasis by inhibiting heparanase and competing for the HS-binding domain of angiogenic growth factors. However, how PG545 exerts its antitumor effect remains incompletely defined. Here, using murine models of lymphoma, we determined that the antitumor effects of PG545 are critically dependent on NK cell activation and that NK cell activation by PG545 requires TLR9. We demonstrate that PG545 does not activate TLR9 directly but instead enhances TLR9 activation through the elevation of the TLR9 ligand CpG in DCs. Specifically, PG545 treatment resulted in CpG accumulation in the lysosomal compartment of DCs, leading to enhanced production of IL-12, which is essential for PG545-mediated NK cell activation. Overall, these results reveal that PG545 activates NK cells and that this activation is critical for the antitumor effect of PG545. Moreover, our findings may have important implications for improving NK cell-based antitumor therapies.


Assuntos
Antineoplásicos/farmacologia , Heparitina Sulfato/farmacologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/efeitos dos fármacos , Linfoma/tratamento farmacológico , Saponinas/farmacologia , Receptor Toll-Like 9/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Interleucina-12/biossíntese , Linfoma/imunologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/fisiologia , Oligodesoxirribonucleotídeos/farmacologia
12.
Eur J Immunol ; 44(9): 2659-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24846540

RESUMO

NK cells are important for the control of vaccinia virus (VV) in vivo. Recent studies have shown that multiple pathways are required for effective activation of NK cells. These include both TLR-dependent and -independent pathways, as well as the NKG2D activating receptor that recognizes host stress-induced NKG2D ligands. However, it remains largely unknown what controls the upregulation of NKG2D ligands in response to VV infection. In this study using C57BL/6 mice, we first showed that IL-18 is critical for NK-cell activation and viral clearance. We then demonstrated that IL-18 signaling on both NK cells and DCs is required for efficient NK-cell activation upon VV infection in vitro. We further showed in vivo that efficient NK-cell activation in response to VV is dependent on DCs and IL-18 signaling in non-NK cells, suggesting an essential role for NK cell-extrinsic IL-18 signaling in NK-cell activation. Mechanistically, IL-18 signaling in DCs promotes expression of Rae-1, an NKG2D ligand. Collectively, our data reveal a previously unrecognized role for NK cell-extrinsic IL-18 signaling in NK-cell activation through upregulation of NKG2D ligands. These observations may provide insights into the design of effective NK-cell-based therapies for viral infections and cancer.


Assuntos
Interleucina-18/imunologia , Células Matadoras Naturais/imunologia , Transdução de Sinais/imunologia , Vaccinia virus/imunologia , Vacínia/imunologia , Animais , Células Dendríticas/imunologia , Interleucina-18/genética , Ativação Linfocitária , Camundongos , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/imunologia , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/imunologia , Transdução de Sinais/genética , Vacínia/genética , Vaccinia virus/genética
13.
J Innate Immun ; 3(3): 274-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21411975

RESUMO

Natural killer (NK) cells, as part of the innate immune system, play a key role in host defense against viral infections. Recent advances have indicated that NK cell activation and function are regulated by the interplay between inhibitory and activating signals. Thus, a better understanding of mechanisms responsible for NK cell activation and function in the control of viral infections will help develop NK cell-based therapies. In this review, we will first discuss how NK cells are activated in response to viral infections. We will then focus on the recruitment of activated NK cells to the site of infection as well as on NK cell effector mechanisms against virally infected cells.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Viroses/imunologia , Animais , Movimento Celular/imunologia , Citotoxicidade Imunológica , Humanos , Imunidade Inata , Imunoterapia/tendências , Células Matadoras Naturais/virologia , Ativação Linfocitária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA