Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 62(23): 3420-3429, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37989209

RESUMO

Cystatins encode a high functional variability not only because of their ability to inhibit different classes of proteases but also because of their propensity to form oligomers and amyloid fibrils. Phytocystatins, essential regulators of protease activity in plants, specifically inhibit papain-like cysteine proteases (PLCPs) and legumains through two distinct cystatin domains. Mammalian cystatins can form amyloid fibrils; however, the potential for amyloid fibril formation of phytocystatins remains unknown. In this study, we demonstrate that Arabidopsis thaliana phytocystatin 6 (AtCYT6) exists as a mixture of monomeric, dimeric, and oligomeric forms in solution. Noncovalent oligomerization was facilitated by the N-terminal cystatin domain, while covalent dimerization occurred through disulfide bond formation in the interdomain linker. The noncovalent dimeric form of AtCYT6 retained activity against its target proteases, papain and legumain, albeit with reduced inhibitory potency. Additionally, we observed the formation of amyloid fibrils by AtCYT6 under acidic pH conditions and upon heating. The amyloidogenic potential could be attributed to the AtCYT6's N-terminal domain (AtCYT6-NTD). Importantly, AtCYT6 amyloid fibrils harbored inhibitory activities against both papain and legumain. These findings shed light on the oligomerization and amyloidogenic behavior of AtCYT6, expanding our understanding of phytocystatin biology and its potential functional implications for plant protease regulation.


Assuntos
Arabidopsis , Cistatinas , Animais , Papaína/química , Amiloide/química , Cistatinas/química , Cistatinas/farmacologia , Peptídeo Hidrolases , Mamíferos
2.
Plant J ; 116(6): 1681-1695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37688791

RESUMO

Plant legumains are crucial for processing seed storage proteins and are critical regulators of plant programmed cell death. Although research on legumains boosted recently, little is known about their activity regulation. In our study, we used pull-down experiments to identify AtCYT6 as a natural inhibitor of legumain isoform ß (AtLEGß) in Arabidopsis thaliana. Biochemical analysis revealed that AtCYT6 inhibits both AtLEGß and papain-like cysteine proteases through two separate cystatin domains. The N-terminal domain inhibits papain-like proteases, while the C-terminal domain inhibits AtLEGß. Furthermore, we showed that AtCYT6 interacts with legumain in a substrate-like manner, facilitated by a conserved asparagine residue in its reactive center loop. Complex formation was additionally stabilized by charged exosite interactions, contributing to pH-dependent inhibition. Processing of AtCYT6 by AtLEGß suggests a context-specific regulatory mechanism with implications for plant physiology, development, and programmed cell death. These findings enhance our understanding of AtLEGß regulation and its broader physiological significance.


Assuntos
Arabidopsis , Papaína , Papaína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Plantas/metabolismo
3.
STAR Protoc ; 4(3): 102519, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37605531

RESUMO

Inter-domain movements act as important activity modulators in multi-domain proteins. Here, we present a protocol for inter-domain cross-linking via engineered cysteines. Using collagenase G (ColG) from Hathewaya histolytica as a model, we describe steps for the design, expression, purification, and cross-linking of the target protein. We detail a system to monitor the progress of the cross-linking reaction and to confirm the structural integrity of the purified cross-linked proteins. We anticipate this protocol to be readily adaptable to other multi-domain enzymes. For complete details on the use and execution of this protocol, please refer to Serwanja et al.1.


Assuntos
Colagenases , Cisteína
4.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982466

RESUMO

While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVß3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro. Importantly, when in complex with BDNF, TrkB was not cleaved by legumain. Legumain-processed TrkB was still able to bind BDNF, suggesting a potential scavenger function of soluble TrkB towards BDNF. The work thus presents another mechanistic link explaining the reciprocal TrkB signaling and δ-secretase activity of legumain, with relevance for neurodegeneration.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Cisteína Proteases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Cisteína Proteases/metabolismo , Transdução de Sinais
5.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293424

RESUMO

Legumain is a lysosomal cysteine protease with strict specificity for cleaving after asparagine residues. By sequence comparison, legumain belongs to MEROPS clan CD of the cysteine proteases, which indicates its structural and mechanistic relation to caspases. Contrasting caspases, legumain harbors a pH-dependent ligase activity in addition to the protease activity. Although we already have a significant body of knowledge on the catalytic activities of legumain, many mechanistic details are still elusive. In this study, we provide evidence that extended active site residues and substrate conformation are steering legumain activities. Biochemical experiments and bioinformatics analysis showed that the catalytic Cys189 and His148 residues are regulated by sterically close Glu190, Ser215 and Asn42 residues. While Glu190 serves as an activity brake, Ser215 and Asn42 have a favorable effect on legumain protease activity. Mutagenesis studies using caspase-9 as model enzyme additionally showed that a similar Glu190 activity brake is also implemented in the caspases. Furthermore, we show that the substrate's conformational flexibility determines whether it will be hydrolyzed or ligated by legumain. The functional understanding of the extended active site residues and of substrate prerequisites will allow us to engineer proteases with increased enzymatic activity and better ligase substrates, with relevance for biotechnological applications.


Assuntos
Asparagina , Caspases , Domínio Catalítico , Caspase 9 , Caspases/genética , Ligases
6.
J Biol Chem ; 298(10): 102502, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36116553

RESUMO

Under pathophysiologic conditions such as Alzheimer's disease and cancer, the endolysosomal cysteine protease legumain was found to translocate to the cytosol, the nucleus, and the extracellular space. These noncanonical localizations demand for a tight regulation of legumain activity, which is in part conferred by protein inhibitors. While there is a significant body of knowledge on the interaction of human legumain with endogenous cystatins, only little is known on its regulation by fungal mycocypins. Mycocypins are characterized by (i) versatile, plastic surface loops allowing them to inhibit different classes of enzymes and (ii) a high resistance toward extremes of pH and temperature. These properties make mycocypins attractive starting points for biotechnological and medical applications. In this study, we show that mycocypins utilize an adaptable reactive center loop to target the active site of legumain in a substrate-like manner. The interaction was further stabilized by variable, isoform-specific exosites, converting the substrate recognition into inhibition. Additionally, we found that selected mycocypins were capable of covalent complex formation with legumain by forming a disulfide bond to the active site cysteine. Furthermore, our inhibition studies with other clan CD proteases suggested that mycocypins may serve as broad-spectrum inhibitors of clan CD proteases. Our studies uncovered the potential of mycocypins as a new scaffold for drug development, providing the basis for the design of specific legumain inhibitors.


Assuntos
Cistatinas , Cisteína Endopeptidases , Humanos , Cisteína Endopeptidases/metabolismo , Cistatinas/metabolismo , Domínio Catalítico , Peptídeo Hidrolases/metabolismo
7.
Methods Mol Biol ; 2447: 35-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583771

RESUMO

Plant proteases of the legumain-type are key players in many processes along the plant life cycle. In particular, legumains are especially important in plant programmed cell death and the processing and maturation of seed storage proteins within the vacuole. Plant legumains are therefore synonymously called vacuolar processing enzymes (VPEs). Because of their dual protease and cyclase activities, plant legumains are of great interest to biotechnological applications, e.g., for the development of cyclic peptides for drug design. Despite this high interest by the scientific community, the recombinant expression of plant legumains proved challenging due to several posttranslational modifications, including (1) the formation of structurally critical disulfide bonds, (2) activation via pH-dependent proteolytic processing, and (3) stabilization by varying degrees of glycosylation. Recently we could show that LEXSY is a robust expression system for the production of plant legumains. Here we provide a general protocol for the recombinant expression of plant legumains in Leishmania cells. We further included detailed procedures for legumain purification, activation and subsequent activity assays and additionally note specific considerations with regard to isoform specific activation intermediates. This protocol serves as a universal strategy for different legumain isoforms from different source organisms.


Assuntos
Leishmania , Peptídeo Hidrolases , Cisteína Endopeptidases , Leishmania/genética , Leishmania/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Isoformas de Proteínas , Vacúolos/metabolismo
8.
ChemMedChem ; 16(8): 1257-1267, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33506625

RESUMO

Microbial infections are a significant threat to public health, and resistance is on the rise, so new antibiotics with novel modes of action are urgently needed. The extracellular zinc metalloprotease collagenase H (ColH) from Clostridium histolyticum is a virulence factor that catalyses tissue damage, leading to improved host invasion and colonisation. Besides the major role of ColH in pathogenicity, its extracellular localisation makes it a highly attractive target for the development of new antivirulence agents. Previously, we had found that a highly selective and potent thiol prodrug (with a hydrolytically cleavable thiocarbamate unit) provided efficient ColH inhibition. We now report the synthesis and biological evaluation of a range of zinc-binding group (ZBG) variants of this thiol-derived inhibitor, with the mercapto unit being replaced by other zinc ligands. Among these, an analogue with a phosphonate motif as ZBG showed promising activity against ColH, an improved selectivity profile, and significantly higher stability than the thiol reference compound, thus making it an attractive candidate for future drug development.


Assuntos
Acetanilidas/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Quelantes/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Organofosfonatos/farmacologia , Acetanilidas/síntese química , Acetanilidas/toxicidade , Animais , Bacillus cereus/enzimologia , Proteínas de Bactérias/metabolismo , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/toxicidade , Clostridium histolyticum/enzimologia , Colágeno/metabolismo , Colagenases/metabolismo , Células HEK293 , Humanos , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/toxicidade , Organofosfonatos/síntese química , Organofosfonatos/toxicidade , Suínos , Peixe-Zebra , Zinco/química
9.
Int J Mol Sci ; 23(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35008838

RESUMO

Streptococcal pyrogenic exotoxin B (SpeB) is a cysteine protease expressed during group A streptococcal infection that represents a major virulence factor. Although subject to several studies, its role during infection is still under debate, and its proteolytic properties remain insufficiently characterized. Here, we revisited this protease through a set of complementary approaches relying on state of-the-art HPLC-MS methods. After conceiving an efficient protocol to recombinantly express SpeB, the zymogen of the protease and its activation were characterized. Employing proteome-derived peptide libraries, a strong preference for hydrophobic and aromatic residues at P2 alongside negatively charged amino acids at P3' to P6' was revealed. To identify relevant in vivo substrates, native proteins were obtained from monocytic secretome and plasma to assess their cleavage under physiological conditions. Besides corroborating our findings concerning specificity, more than 200 cleaved proteins were identified, including proteins of the extracellular matrix, proteins of the immune system, and proteins involved in inflammation. Finally, the cleavage of IgG subclasses was studied in detail. This study precisely depicts the proteolytic properties of SpeB and provides a library of potential host substrates, including their exact cleavage positions, as a valuable source for further research to unravel the role of SpeB during streptococcal infection.


Assuntos
Proteínas de Bactérias/metabolismo , Exotoxinas/metabolismo , Espectrometria de Massas , Proteólise , Streptococcus pyogenes/metabolismo , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Escherichia coli/metabolismo , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
10.
J Biol Chem ; 295(37): 13047-13064, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719006

RESUMO

The vacuolar cysteine protease legumain plays important functions in seed maturation and plant programmed cell death. Because of their dual protease and ligase activity, plant legumains have become of particular biotechnological interest, e.g. for the synthesis of cyclic peptides for drug design or for protein engineering. However, the molecular mechanisms behind their dual protease and ligase activities are still poorly understood, limiting their applications. Here, we present the crystal structure of Arabidopsis thaliana legumain isoform ß (AtLEGß) in its zymogen state. Combining structural and biochemical experiments, we show for the first time that plant legumains encode distinct, isoform-specific activation mechanisms. Whereas the autocatalytic activation of isoform γ (AtLEGγ) is controlled by the latency-conferring dimer state, the activation of the monomeric AtLEGß is concentration independent. Additionally, in AtLEGß the plant-characteristic two-chain intermediate state is stabilized by hydrophobic rather than ionic interactions, as in AtLEGγ, resulting in significantly different pH stability profiles. The crystal structure of AtLEGß revealed unrestricted nonprime substrate binding pockets, consistent with the broad substrate specificity, as determined by degradomic assays. Further to its protease activity, we show that AtLEGß exhibits a true peptide ligase activity. Whereas cleavage-dependent transpeptidase activity has been reported for other plant legumains, AtLEGß is the first example of a plant legumain capable of linking free termini. The discovery of these isoform-specific differences will allow us to identify and rationally design efficient ligases with application in biotechnology and drug development.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Cisteína Endopeptidases/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo
11.
Anal Chem ; 92(4): 2961-2971, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31951383

RESUMO

Bottom-up mass spectrometry-based proteomics utilizes proteolytic enzymes with well characterized specificities to generate peptides amenable for identification by high-throughput tandem mass spectrometry. Trypsin, which cuts specifically after the basic residues lysine and arginine, is the predominant enzyme used for proteome digestion, although proteases with alternative specificities are required to detect sequences that are not accessible after tryptic digest. Here, we show that the human cysteine protease legumain exhibits a strict substrate specificity for cleavage after asparagine and aspartic acid residues during in-solution digestions of proteomes extracted from Escherichia coli, mouse embryonic fibroblast cell cultures, and Arabidopsis thaliana leaves. Generating peptides highly complementary in sequence, yet similar in their biophysical properties, legumain (as compared to trypsin or GluC) enabled complementary proteome and protein sequence coverage. Importantly, legumain further enabled the identification and enrichment of protein N-termini not accessible in GluC- or trypsin-digested samples. Legumain cannot cleave after glycosylated Asn residues, which enabled the robust identification and orthogonal validation of N-glycosylation sites based on alternating sequential sample treatments with legumain and PNGaseF and vice versa. Taken together, we demonstrate that legumain is a practical, efficient protease for extending the proteome and sequence coverage achieved with trypsin, with unique possibilities for the characterization of post-translational modification sites.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteoma/metabolismo , Animais , Arabidopsis/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/isolamento & purificação , Escherichia coli/metabolismo , Humanos , Camundongos , Folhas de Planta/metabolismo , Proteoma/química , Proteômica
12.
Mol Immunol ; 116: 140-150, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31654938

RESUMO

BACKGROUND: Non-specific lipid transfer proteins (LTPs) are important allergens in fruits, pollen, vegetables, nuts and latex. Due to their compact structure, LTPs are highly resistant to heat treatment. Here, Art v 3 from mugwort pollen and Pru p 3 from peach were used as model allergens to in-depth investigate structural and immunological properties upon thermal treatment at different buffer conditions. METHODS: Recombinant Art v 3 and Pru p 3 were purified from E. coli and incubated at 95 °C up to 120 min using sodium phosphate buffer pH 3.4 or 7.3. Physicochemical properties of allergens were analyzed in circular dichroism spectroscopy, Fourier transform infrared spectroscopy, dynamic light scattering, size exclusion chromatography, and mass spectrometry. The crystal structure of Art v 3.0201 was determined to 1.9 Šresolution. IgG and IgE binding was investigated in ELISA using murine and LTP allergic patients' sera. RESULTS: Highly pure and homogenous recombinant allergens were obtained from bacterial production. The crystal structure of Art v 3.0201 revealed an antiparallel four helix bundle with a C-terminal extension mediating an asymmetric, transient dimer interface and differently sized cavities. Both allergens showed high thermal stability at acidic conditions. In contrast, extensive heat treatment in neutral buffer induced irreversible structural changes due to lanthionine-based cysteine rearrangement. This fostered loss of the typical α-helical structure, increased molecular size and abrogation of IgG and IgE binding epitopes. Pru p 3 lost its structural integrity at shorter heat stress duration than Art v 3, which did however only partially affect the molecule's IgE binding epitopes. CONCLUSION: During thermal treatment, susceptibility to structural changes of the LTP-fold is highly dependent on the surrounding environment but also on intrinsic features of individual LTPs. This is a crucial fact to consider when processing LTP-containing food or food products as this will directly influence their allergenic potential.


Assuntos
Alanina/análogos & derivados , Antígenos de Plantas/metabolismo , Proteínas de Transporte/metabolismo , Cisteína/metabolismo , Proteínas de Plantas/metabolismo , Sulfetos/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Animais , Artemisia/metabolismo , Reações Cruzadas/fisiologia , Epitopos/metabolismo , Escherichia coli/metabolismo , Hipersensibilidade Alimentar/metabolismo , Humanos , Imunoglobulina E/metabolismo , Imunoglobulina G/metabolismo , Camundongos , Pólen/metabolismo , Prunus/metabolismo
13.
Biochimie ; 166: 52-76, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31505212

RESUMO

Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem ß-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.


Assuntos
Serina Endopeptidases/química , Serina Endopeptidases/fisiologia , Animais , Sítios de Ligação , Domínio Catalítico , Humanos , Modelos Moleculares , Conformação Proteica em Folha beta , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Eur J Med Chem ; 179: 765-778, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31284086

RESUMO

Chagas disease, Human African Trypanosomiasis, and schistosomiasis are neglected parasitic diseases for which new treatments are urgently needed. To identify new chemical leads, we screened the 400 compounds of the Open Access Malaria Box against the cysteine proteases, cruzain (Trypanosoma cruzi), rhodesain (Trypanosoma brucei) and SmCB1 (Schistosoma mansoni), which are therapeutic targets for these diseases. Whereas just three hits were observed for SmCB1, 70 compounds inhibited cruzain or rhodesain by at least 50% at 5 µM. Among those, 15 commercially available compounds were selected for confirmatory assays, given their potency, time-dependent inhibition profile and reported activity against parasites. Additional assays led to the confirmation of four novel classes of cruzain and rhodesain inhibitors, with potency in the low-to mid-micromolar range against enzymes and T. cruzi. Assays against mammalian cathepsins S and B revealed inhibitor selectivity for parasitic proteases. For the two competitive inhibitors identified (compounds 7 and 12), their binding mode was predicted by docking, providing a basis for structure-based optimization efforts. Compound 12 also acted directly against the trypomastigote and the intracellular amastigote forms of T. cruzi at 3 µM. Therefore, through a combination of experimental and computational approaches, we report promising hits for optimization in the development of new trypanocidal drugs.


Assuntos
Cisteína Proteases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Descoberta de Drogas , Malária/tratamento farmacológico , Schistosoma mansoni/metabolismo , Tripanossomicidas/farmacologia , Animais , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Relação Dose-Resposta a Droga , Malária/metabolismo , Estrutura Molecular , Testes de Sensibilidade Parasitária , Schistosoma mansoni/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo
15.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 6): 419-427, 2019 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31204688

RESUMO

Chagas disease, which is caused by Trypanosoma cruzi, affects more than six million people worldwide. Cruzain is the major cysteine protease involved in the survival of this parasite. Here, the expression, purification and crystallization of this enzyme are reported. The cruzain crystals diffracted to 1.2 Šresolution, yielding two novel cruzain structures: apocruzain and cruzain bound to the reversible covalent inhibitor S-methyl thiomethanesulfonate. Mass-spectrometric experiments confirmed the presence of a methylthiol group attached to the catalytic cysteine. Comparison of these structures with previously published structures indicates the rigidity of the cruzain structure. These results provide further structural information about the enzyme and may help in new in silico studies to identify or optimize novel prototypes of cruzain inhibitors.


Assuntos
Apoproteínas/química , Apoproteínas/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Metanossulfonato de Metila/análogos & derivados , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Metanossulfonato de Metila/química , Metanossulfonato de Metila/metabolismo , Modelos Moleculares , Conformação Proteica
16.
Allergy ; 74(12): 2382-2393, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230350

RESUMO

BACKGROUND: Over 100 million people worldwide suffer from birch pollen allergy. Bet v 1 has been identified as the major birch pollen allergen. However, the molecular mechanisms of birch allergic sensitization, including the roles of Bet v 1 and other components of the birch pollen extract, remain incompletely understood. Here, we examined how known birch pollen-derived molecules influence the endolysosomal processing of Bet v 1, thereby shaping its allergenicity. METHODS: We analyzed the biochemical and immunological interaction of ligands with Bet v 1. We then investigated the proteolytic processing of Bet v 1 by endosomal extracts in the presence and absence of ligands, followed by a detailed kinetic analysis of Bet v 1 processing by individual endolysosomal proteases as well as the T-cell epitope presentation in BMDCs. RESULTS: We identified E1 phytoprostanes as novel Bet v 1 ligands. Pollen-derived ligands enhanced the proteolytic resistance of Bet v 1, affecting degradation kinetics and preferential cleavage sites of the endolysosomal proteases cathepsin S and legumain. E1 phytoprostanes exhibited a dual role by stabilizing Bet v 1 and inhibiting cathepsin protease activity. CONCLUSION: Bet v 1 can serve as a transporter of pollen-derived, bioactive compounds. When carried to the endolysosome, such compounds can modulate the proteolytic activity, including its processing by cysteine cathepsins. We unveil a paradigm shift from an allergen-centered view to a more systemic view that includes the host endolysosomal enzymes.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Endossomos/enzimologia , Peptídeo Hidrolases/metabolismo , Basófilos/imunologia , Basófilos/metabolismo , Betula/imunologia , Degranulação Celular/imunologia , Ativação Enzimática , Humanos , Imunoglobulina E/imunologia , Ligantes , Pólen/imunologia , Ligação Proteica , Proteínas Recombinantes
17.
FEBS Open Bio ; 9(8): 1370-1378, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31077577

RESUMO

Blood coagulation involves extrinsic and intrinsic pathways, which merge at the activation step of blood coagulation factor X to factor Xa. This step is catalysed by the extrinsic or intrinsic Xase, which consists of a complex of factor VIIa and its cofactor tissue factor or factor IXa (FIXa) and its cofactor coagulation factor VIIIa (FVIIIa). Upon complex formation with FVIIIa, FIXa is conformationally activated to the Xase complex. However, the mechanistic understanding of this molecular recognition is limited. Here, we examined FVIIIa-FIXa binding in the context of FIXa's activation status. Given the complexity and the labile nature of FVIIIa, we decided to employ two FVIII-derived peptides (558-loop, a2 peptide) to model the cofactor binding of FIX(a) using biosensor chip technology. These two FVIII peptides are known to mediate the key interactions between FVIIIa and FIXa. We found both of these cofactor mimetics as well as full-length FVIIIa bind more tightly to zymogenic FIX than to proteolytically activated FIXa. Consequently and surprisingly, we observed that the catalytically inactive FIX zymogen can outcompete the activated FIXa from the complex with FVIIIa, resulting in an inactive, zymogenic Xase complex. By contrast, the thrombophilic Padua mutant FIXa-R170 in complex with the protein-substrate analogue BPTI bound tighter to FVIIIa than to the zymogen form FIX-R170L, suggesting that the active Xase complex preferentially forms in the Padua variant. Together, these results provide a mechanistic basis for the thrombophilic nature of the FIX-R170L mutant and suggest the existence of a newly discovered safety measure within the coagulation cascade.


Assuntos
Cisteína Endopeptidases/metabolismo , Fator IXa/metabolismo , Fator VIIIa/metabolismo , Proteínas de Neoplasias/metabolismo , Sequência de Aminoácidos , Coagulação Sanguínea/fisiologia , Fatores de Coagulação Sanguínea/química , Fatores de Coagulação Sanguínea/metabolismo , Cisteína Endopeptidases/fisiologia , Fator IXa/química , Fator VIII/química , Fator VIII/metabolismo , Fator VIIIa/química , Hemostáticos , Humanos , Cinética , Proteínas de Neoplasias/fisiologia , Peptídeos/metabolismo , Conformação Proteica
18.
Biol Chem ; 399(9): 1009-1022, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29975661

RESUMO

Human kallikrein-related peptidases 3, 4, 11, and KLK2, the activator of KLK3/PSA, belong to the prostatic group of the KLKs, whose major physiological function is semen liquefaction during the fertilization process. Notably, these KLKs are upregulated in prostate cancer and are used as clinical biomarkers or have been proposed as therapeutic targets. However, this potential awaits a detailed characterization of these proteases. In order to study glycosylated prostatic KLKs resembling the natural proteases, we used Leishmania (LEXSY) and HEK293 cells for secretory expression. Both systems allowed the subsequent purification of soluble pro-KLK zymogens with correct propeptides and of the mature forms. Periodic acid-Schiff reaction, enzymatic deglycosylation assays, and mass spectrometry confirmed the glycosylation of these KLKs. Activation of glycosylated pro-KLKs 4 and 11 turned out to be most efficient by glycosylated KLK2 and KLK4, respectively. By comparing the glycosylated prostatic KLKs with their non-glycosylated counterparts from Escherichia coli, it was observed that the N-glycans stabilize the KLK proteases and change their activation profiles and their enzymatic activity to some extent. The functional role of glycosylation in prostate-specific KLKs could pave the way to a deeper understanding of their biology and to medical applications.


Assuntos
Calicreínas/metabolismo , Antígeno Prostático Específico/metabolismo , Serina Endopeptidases/metabolismo , Clonagem Molecular , Glicosilação , Células HEK293 , Humanos , Calicreínas/genética , Antígeno Prostático Específico/genética , Serina Endopeptidases/genética
19.
J Biol Chem ; 293(34): 13151-13165, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967063

RESUMO

Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.


Assuntos
Amiloide/química , Cistatina M/química , Cistatina M/metabolismo , Papaína/antagonistas & inibidores , Multimerização Proteica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
20.
Biol Chem ; 399(9): 997-1007, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29883318

RESUMO

In humans, three different trypsin-isoenzymes have been described. Of these, trypsin-3 appears to be functionally different from the others. In order to systematically study the specificity of the trypsin-isoenzymes, we utilized proteome-derived peptide libraries and quantitative proteomics. We found similar specificity profiles dominated by the well-characterized preference for cleavage after lysine and arginine. Especially, trypsin-1 slightly favored lysine over arginine in this position, while trypsin-3 did not discriminate between them. In the P1' position, which is the residue C-terminal to the cleavage site, we noticed a subtle enrichment of alanine and glycine for all three trypsins and for trypsin-3 there were additional minor P1' and P2' preferences for threonine and aspartic acid, respectively. These findings were confirmed by FRET peptide substrates showing different susceptibility to cleavage by different trypsins. The preference of trypsin-3 for aspartic acid in P2' is explained by salt bridge formation with the unique Arg193. This salt bridge enables and stabilizes a canonical oxyanion conformation by the amides of Ser195 and Arg193, thus manifesting a selective substrate-assisted catalysis. As trypsin-3 has been proposed to be a therapeutic target and marker for cancers, our results may aid the development of specific inhibitors for cancer therapy and diagnostic probes.


Assuntos
Tripsina/química , Tripsina/metabolismo , Sequência de Aminoácidos , Corantes Fluorescentes/química , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Moleculares , Alinhamento de Sequência , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA