Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 86(6): 1373-1384, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37306303

RESUMO

Three previously undescribed azepino-indole alkaloids, named purpurascenines A-C (1-3), together with the new-to-nature 7-hydroxytryptophan (4) as well as two known compounds, adenosine (5) and riboflavin (6), were isolated from fruiting bodies of Cortinarius purpurascens Fr. (Cortinariaceae). The structures of 1-3 were elucidated based on spectroscopic analyses and ECD calculations. Furthermore, the biosynthesis of purpurascenine A (1) was investigated by in vivo experiments using 13C-labeled sodium pyruvate, alanine, and sodium acetate incubated with fruiting bodies of C. purpurascens. The incorporation of 13C into 1 was analyzed using 1D NMR and HRESIMS methods. With [3-13C]-pyruvate, a dramatic enrichment of 13C was observed, and hence a biosynthetic route via a direct Pictet-Spengler reaction between α-keto acids and 7-hydroxytryptophan (4) is suggested for the biosynthesis of purpurascenines A-C (1-3). Compound 1 exhibits no antiproliferative or cytotoxic effects against human prostate (PC-3), colorectal (HCT-116), and breast (MCF-7) cancer cells. An in silico docking study confirmed the hypothesis that purpurascenine A (1) could bind to the 5-HT2A serotonin receptor's active site. A new functional 5-HT2A receptor activation assay showed no functional agonistic but some antagonistic effects of 1 against the 5-HT-dependent 5-HT2A activation and likely antagonistic effects on putative constitutive activity of the 5-HT2A receptor.


Assuntos
Cortinarius , Serotonina , Masculino , Humanos , Serotonina/metabolismo , Serotonina/farmacologia , Receptor 5-HT2A de Serotonina , Alcaloides Indólicos/farmacologia , Cortinarius/química , Cortinarius/metabolismo
2.
Curr Biol ; 32(10): 2189-2205.e6, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35472311

RESUMO

Access to inorganic phosphate (Pi), a principal intermediate of energy and nucleotide metabolism, profoundly affects cellular activities and plant performance. In most soils, antagonistic Pi-metal interactions restrict Pi bioavailability, which guides local root development to maximize Pi interception. Growing root tips scout the essential but immobile mineral nutrient; however, the mechanisms monitoring external Pi status are unknown. Here, we show that Arabidopsis LOW PHOSPHATE ROOT 1 (LPR1), one key determinant of Fe-dependent Pi sensing in root meristems, encodes a novel ferroxidase of high substrate specificity and affinity (apparent KM ∼ 2 µM Fe2+). LPR1 typifies an ancient, Fe-oxidizing multicopper protein family that evolved early upon bacterial land colonization. The ancestor of streptophyte algae and embryophytes (land plants) acquired LPR1-type ferroxidase from soil bacteria via horizontal gene transfer, a hypothesis supported by phylogenomics, homology modeling, and biochemistry. Our molecular and kinetic data on LPR1 regulation indicate that Pi-dependent Fe substrate availability determines LPR1 activity and function. Guided by the metabolic lifestyle of extant sister bacterial genera, we propose that Arabidopsis LPR1 monitors subtle concentration differentials of external Fe availability as a Pi-dependent cue to adjust root meristem maintenance via Fe redox signaling and cell wall modification. We further hypothesize that the acquisition of bacterial LPR1-type ferroxidase by embryophyte progenitors facilitated the evolution of local Pi sensing and acquisition during plant terrestrialization.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bactérias/metabolismo , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Fosfatos/metabolismo , Raízes de Plantas
3.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884518

RESUMO

Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1-3).


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Ésteres/química , Ácido Glutâmico/química , Hypocreales/fisiologia , Neoplasias/tratamento farmacológico , Peptaibols/farmacologia , Ascomicetos/efeitos dos fármacos , Botrytis/efeitos dos fármacos , Humanos , Neoplasias/patologia , Peptaibols/química , Phytophthora infestans/efeitos dos fármacos , Células Tumorais Cultivadas
4.
Plant J ; 105(5): 1309-1325, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33617106

RESUMO

Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.


Assuntos
Hemípteros/metabolismo , Sesquiterpenos Monocíclicos/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Solanum/metabolismo , Animais , Botrytis/efeitos dos fármacos , Botrytis/patogenicidade , Hemípteros/genética , Hemípteros/microbiologia , Sesquiterpenos Monocíclicos/toxicidade , NADPH-Ferri-Hemoproteína Redutase/genética , Phytophthora infestans/efeitos dos fármacos , Phytophthora infestans/patogenicidade , Solanum/genética
5.
Org Biomol Chem ; 18(20): 3838-3842, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32400808

RESUMO

Stapled peptides derived from the Ugi macrocyclization comprise a special class of cyclopeptides with an N-substituted lactam bridge cross-linking two amino acid side chains. Herein we report a comprehensive analysis of the structural factors influencing the secondary structure of these cyclic peptides in solution. Novel insights into the s-cis/s-trans isomerism and the effect of N-functionalization on the conformation are revealed.


Assuntos
Lactamas/química , Peptídeos/química , Ciclização , Peptídeos/síntese química , Estrutura Secundária de Proteína
6.
Molecules ; 24(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390787

RESUMO

Phyllanthus orbicularis (Phyllanthaceae) is an endemic evergreen tropical plant of Cuba that grows in the western part of the island and is used in traditional medicine as an infusion. The aqueous extract of this plant presents a wide range of pharmacological activitiessuch as antimutagenic, antioxidant and antiviral effects. Given the many beneficial effects and the great interest in the development of new pharmacological products from natural sources, the aim of this work was to investigate the phytochemistry of this species and to elucidate the structure of the main bioactive principles. Besides the presence of several known polyphenols, the major constituent was hitherto not described. The chemical structure of this compound, here named Fideloside, was elucidated by means of HR-ESIMS/MSn, 1D/2D NMR, FT-IR, and ECD as (2R,3R)-(-)-3',4',5,7-tetrahydroxydihydroflavonol-8-C-ß-D-glucopyranoside. The compound, as well as the plant aqueous preparations, showed promising bioactive properties, i.e., anti-inflammatory capacity in human explanted monocytes, corroborating future pharmacological use for this new natural C-glycosyl flavanonol.


Assuntos
Phyllanthus/química , Compostos Fitoquímicos/química , Extratos Vegetais/química , Plantas Medicinais/química , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Flavonoides/química , Flavonoides/farmacologia , Humanos , Modelos Moleculares , Estrutura Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Análise Espectral
7.
PLoS One ; 13(11): e0205755, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395611

RESUMO

Glucosinolates, a group of sulfur-rich thioglucosides found in plants of the order Brassicales, have attracted a lot of interest as chemical defenses of plants and health promoting substances in human diet. They are accumulated separately from their hydrolyzing enzymes, myrosinases, within the intact plant, but undergo myrosinase-catalyzed hydrolysis upon tissue disruption. This results in various biologically active products, e.g. isothiocyanates, simple nitriles, epithionitriles, and organic thiocyanates. While formation of isothiocyanates proceeds by a spontaneous rearrangement of the glucosinolate aglucone, aglucone conversion to the other products involves specifier proteins under physiological conditions. Specifier proteins appear to act with high specificity, but their exact roles and the structural bases of their specificity are presently unknown. Previous research identified the motif EXXXDXXXH as potential iron binding site required for activity, but crystal structures of recombinant specifier proteins lacked the iron cofactor. Here, we provide experimental evidence for the presence of iron (most likely Fe2+) in purified recombinant thiocyanate-forming protein from Thlaspi arvense (TaTFP) using a Ferene S-based photometric assay as well as Inductively Coupled Plasma-Mass Spectrometry. Iron binding and activity depend on E266, D270, and H274 suggesting a direct interaction of Fe2+ with these residues. Furthermore, we demonstrate presence of iron in epithiospecifier protein and nitrile-specifier protein 3 from Arabidopsis thaliana (AtESP and AtNSP3). We also present a homology model of AtNSP3. In agreement with this model, iron binding and activity of AtNSP3 depend on E386, D390, and H394. The homology model further suggests that the active site of AtNSP3 imposes fewer restrictions to the glucosinolate aglucone conformation than that of TaTFP and AtESP due to its larger size. This may explain why AtNSP3 does not support epithionitrile or thiocyanate formation, which likely requires exact positioning of the aglucone thiolate relative to the side chain.


Assuntos
Glucosinolatos/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Glucosinolatos/química , Simulação de Acoplamento Molecular , Mutação/genética , Homologia Estrutural de Proteína , Thlaspi/metabolismo , Triazinas/metabolismo
8.
Plant Physiol ; 172(4): 2120-2131, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27729471

RESUMO

Flowers of Nicotiana species emit a characteristic blend including the cineole cassette monoterpenes. This set of terpenes is synthesized by multiproduct enzymes, with either 1,8-cineole or α-terpineol contributing most to the volatile spectrum, thus referring to cineole or terpineol synthase, respectively. To understand the molecular and structural requirements of the enzymes that favor the biochemical formation of α-terpineol and 1,8-cineole, site-directed mutagenesis, in silico modeling, and semiempiric calculations were performed. Our results indicate the formation of α-terpineol by a nucleophilic attack of water. During this attack, the α-terpinyl cation is stabilized by π-stacking with a tryptophan side chain (tryptophan-253). The hypothesized catalytic mechanism of α-terpineol-to-1,8-cineole conversion is initiated by a catalytic dyad (histidine-502 and glutamate-249), acting as a base, and a threonine (threonine-278) providing the subsequent rearrangement from terpineol to cineol by catalyzing the autoprotonation of (S)-(-)-α-terpineol, which is the favored enantiomer product of the recombinant enzymes. Furthermore, by site-directed mutagenesis, we were able to identify amino acids at positions 147, 148, and 266 that determine the different terpineol-cineole ratios in Nicotiana suaveolens cineole synthase and Nicotiana langsdorffii terpineol synthase. Since amino acid 266 is more than 10 Å away from the active site, an indirect effect of this amino acid exchange on the catalysis is discussed.


Assuntos
Alquil e Aril Transferases/metabolismo , Cicloexanóis/metabolismo , Cicloexenos/metabolismo , Monoterpenos/metabolismo , Nicotiana/enzimologia , Alquil e Aril Transferases/química , Sequência de Aminoácidos , Domínio Catalítico , Simulação por Computador , Ciclização , Monoterpenos Cicloexânicos , Cicloexanóis/química , Cicloexenos/química , Eucaliptol , Monoterpenos/química , Mutagênese Sítio-Dirigida , Proteínas Mutantes/metabolismo , Alinhamento de Sequência , Estereoisomerismo , Homologia Estrutural de Proteína , Compostos Orgânicos Voláteis/análise
9.
Nat Commun ; 7: 12942, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27703160

RESUMO

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.


Assuntos
Abietanos/biossíntese , Rosmarinus/metabolismo , Salvia/metabolismo , Abietanos/metabolismo , Anti-Inflamatórios/química , Antineoplásicos/química , Antioxidantes/química , Escherichia coli/metabolismo , Vetores Genéticos , Humanos , Espectroscopia de Ressonância Magnética , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Oxidantes/química , Oxigênio , Filogenia , Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas por Ionização por Electrospray
10.
Nat Commun ; 7: 12202, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27447739

RESUMO

Phenotypes on-demand generated by controlling activation and accumulation of proteins of interest are invaluable tools to analyse and engineer biological processes. While temperature-sensitive alleles are frequently used as conditional mutants in microorganisms, they are usually difficult to identify in multicellular species. Here we present a versatile and transferable, genetically stable system based on a low-temperature-controlled N-terminal degradation signal (lt-degron) that allows reversible and switch-like tuning of protein levels under physiological conditions in vivo. Thereby, developmental effects can be triggered and phenotypes on demand generated. The lt-degron was established to produce conditional and cell-type-specific phenotypes and is generally applicable in a wide range of organisms, from eukaryotic microorganisms to plants and poikilothermic animals. We have successfully applied this system to control the abundance and function of transcription factors and different enzymes by tunable protein accumulation.


Assuntos
Arabidopsis/metabolismo , Drosophila/metabolismo , Nicotiana/metabolismo , Proteólise , Saccharomyces cerevisiae/metabolismo , Animais , Arabidopsis/classificação , Arabidopsis/genética , Células Cultivadas , Drosophila/classificação , Drosophila/genética , Fenótipo , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Temperatura , Nicotiana/classificação , Nicotiana/genética
11.
J Nat Prod ; 79(4): 743-53, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26950610

RESUMO

The chemical investigation of the chloroform extract of Hypericum lanceolatum guided by (1)H NMR, ESIMS, and TLC profiles led to the isolation of 11 new tricyclic acylphloroglucinol derivatives, named selancins A-I (1-9) and hyperselancins A and B (10 and 11), along with the known compound 3-O-geranylemodin (12), which is described for a Hypericum species for the first time. Compounds 8 and 9 are the first examples of natural products with a 6-acyl-2,2-dimethylchroman-4-one core fused with a dimethylpyran unit. The new compounds 1-9 are rare acylphloroglucinol derivatives with two fused dimethylpyran units. Compounds 10 and 11 are derivatives of polycyclic polyprenylated acylphloroglucinols related to hyperforin, the active component of St. John's wort. Their structures were elucidated by UV, IR, extensive 1D and 2D NMR experiments, HRESIMS, and comparison with the literature data. The absolute configurations of 5, 8, 10, and 11 were determined by comparing experimental and calculated electronic circular dichroism spectra. Compounds 1 and 2 were synthesized regioselectively in two steps. The cytotoxicity of the crude extract (88% growth inhibition at 50 µg/mL) and of compounds 1-6, 8, 9, and 12 (no significant growth inhibition up to a concentration of 10 mM) against colon (HT-29) and prostate (PC-3) cancer cell lines was determined. No anthelmintic activity was observed for the crude extract.


Assuntos
Antineoplásicos Fitogênicos , Floroglucinol , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Camarões , Células HT29 , Humanos , Hypericum/química , Masculino , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Floroglucinol/análogos & derivados , Floroglucinol/síntese química , Floroglucinol/química , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Estereoisomerismo , Terpenos
12.
Invest Ophthalmol Vis Sci ; 57(1): 56-65, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26780310

RESUMO

PURPOSE: Trefoil factor family (TFF) peptides, and in particular TFF3, are characteristic secretory products of mucous epithelia that promote antiapoptosis, epithelial migration, restitution, and wound healing. For a long time, a receptor for TFF3 had not yet been identified. However, the chemokine receptor CXCR4 has been described as a low affinity receptor for TFF2. Additionally, CXCR7, which is able to heterodimerize with CXCR4, has also been discussed as a potential TFF2 receptor. Since there are distinct structural similarities between the three known TFF peptides, this study evaluated whether CXCR4 and CXCR7 may also act as putative TFF3 receptors. METHODS: We evaluated the expression of both CXCR4 and CXCR7 in samples of human ocular surface tissues and cell lines, using RT-PCR, immunohistochemistry, and Western blot analysis. Furthermore, we studied possible binding interactions between TFF3 and the receptor proteins in an x-ray structure-based modeling system. Functional studies of TFF3-CXCR4/CXCR7 interaction were accomplished by cell culture-based migration assays, flow cytometry, and evaluation of activation of the mitogen-activated protein (MAP) kinase signaling cascade. RESULTS: We detected both receptors at mRNA and protein level in all analyzed ocular surface tissues, and in lesser amount in ocular surface cell lines. X-ray structure-based modeling revealed CXCR4 and CXCR7 dimers as possible binding partners to TFF3. Cell culture-based assays revealed enhanced cell migration under TFF3 stimulation in a conjunctival epithelial cell line, which was completely suppressed by blocking CXCR4 and/or CXCR7. Flow cytometry showed increased proliferation rates after TFF3 treatment, while blocking both receptors had no effect on this increase. Trefoil factor family 3 also activated the MAP kinase signaling cascade independently from receptor activity. CONCLUSIONS: Dimers CXCR4 and CXCR7 are involved in TFF3-dependent activation of cell migration, but not cell proliferation. The ERK1/2 pathway is activated in the process, but not influenced by CXCR4 or CXCR7. These results implicate a dependence of TFF3 activity as to cell migration on the chemokine receptors CXCR4 and CXCR7 at the ocular surface.


Assuntos
Epitélio Corneano/metabolismo , Regulação da Expressão Gênica , Sistema de Sinalização das MAP Quinases/fisiologia , Peptídeos/genética , RNA/genética , Receptores CXCR4/genética , Receptores CXCR/genética , Idoso , Idoso de 80 Anos ou mais , Apoptose , Western Blotting , Cadáver , Linhagem Celular , Movimento Celular , Proliferação de Células , Epitélio Corneano/citologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Peptídeos/metabolismo , Receptores CXCR/biossíntese , Receptores CXCR4/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fator Trefoil-2 , Fator Trefoil-3
13.
Plant J ; 83(2): 263-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26017378

RESUMO

Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.


Assuntos
Benzofuranos/metabolismo , Compostos de Bifenilo/metabolismo , Proteína O-Metiltransferase/metabolismo , Sequência de Aminoácidos , Malus , Dados de Sequência Molecular , Proteína O-Metiltransferase/química , Proteína O-Metiltransferase/genética , Pyrus , RNA Mensageiro/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
FASEB J ; 29(8): 3315-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25921828

RESUMO

Antimicrobial peptides form part of the first line of defense against pathogens for many organisms. Current treatments for fungal infections are limited by drug toxicity and pathogen resistance. Cm-p5 (SRSELIVHQRLF), a peptide derived from the marine mollusk Cenchritis muricatus peptide Cm-p1, has a significantly increased fungistatic activity against pathogenic Candida albicans (minimal inhibitory concentration, 10 µg/ml; EC50, 1.146 µg/ml) while exhibiting low toxic effects against a cultured mammalian cell line. Cm-p5 as characterized by circular dichroism and nuclear magnetic resonance revealed an α-helical structure in membrane-mimetic conditions and a tendency to random coil folding in aqueous solutions. Additional studies modeling Cm-p5 binding to a phosphatidylserine bilayer in silico and isothermal titration calorimetry using lipid monophases demonstrated that Cm-p5 has a high affinity for the phospholipids of fungal membranes (phosphatidylserine and phosphatidylethanolamine), only moderate interactions with a mammalian membrane phospholipid, low interaction with ergosterol, and no interaction with chitin. Adhesion of Cm-p5 to living C. albicans cells was confirmed by fluorescence microscopy with FITC-labeled peptide. In a systemic candidiasis model in mice, intraperitoneal administration of Cm-p5 was unable to control the fungal kidney burden, although its low amphiphaticity could be modified to generate new derivatives with improved fungicidal activity and stability.


Assuntos
Antifúngicos/farmacologia , Gastrópodes/metabolismo , Moluscos/metabolismo , Peptídeos/farmacologia , Animais , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dicroísmo Circular/métodos , Feminino , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana/métodos , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipídeos/metabolismo , Estrutura Secundária de Proteína
15.
Plant Cell ; 27(2): 448-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25670767

RESUMO

The overproduction of specialized metabolites requires plants to manage the inherent burdens, including the risk of self-intoxication. We present a control mechanism that stops the expression of phytoalexin biosynthetic enzymes by blocking the antecedent signal transduction cascade. Cultured cells of Eschscholzia californica (Papaveraceae) and Catharanthus roseus (Apocynaceae) overproduce benzophenanthridine alkaloids and monoterpenoid indole alkaloids, respectively, in response to microbial elicitors. In both plants, an elicitor-responsive phospholipase A2 (PLA2) at the plasma membrane generates signal molecules that initiate the induction of biosynthetic enzymes. The final alkaloids produced in the respective plant inhibit the respective PLA, a negative feedback that prevents continuous overexpression. The selective inhibition by alkaloids from the class produced in the "self" plant could be transferred to leaves of Nicotiana benthamiana via recombinant expression of PLA2. The 3D homology model of each PLA2 displays a binding pocket that specifically accommodates alkaloids of the class produced by the same plant, but not of the other class; for example, C. roseus PLA2 only accommodates C. roseus alkaloids. The interaction energies of docked alkaloids correlate with their selective inhibition of PLA2 activity. The existence in two evolutionary distant plants of phospholipases A2 that discriminate "self-made" from "foreign" alkaloids reveals molecular fingerprints left in signal enzymes during the evolution of species-specific, cytotoxic phytoalexins.


Assuntos
Alcaloides/metabolismo , Catharanthus/enzimologia , Fosfolipases A2/metabolismo , Sesquiterpenos/metabolismo , Sequência de Aminoácidos , Benzofenantridinas/farmacologia , Sítios de Ligação , Vias Biossintéticas/efeitos dos fármacos , Catharanthus/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Clonagem Molecular , Inativação Gênica/efeitos dos fármacos , Isoquinolinas/farmacologia , Modelos Moleculares , Dados de Sequência Molecular , Papaveraceae/citologia , Papaveraceae/efeitos dos fármacos , Fosfolipases A2/química , Alinhamento de Sequência , Transdução de Sinais/efeitos dos fármacos , Fitoalexinas
16.
Eur J Med Chem ; 90: 267-79, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25461327

RESUMO

The androgen receptor is an important pharmaceutical target for a variety of diseases. This paper presents an in silico/in vitro screening procedure to identify new androgen receptor ligands. The two-step virtual screening procedure uses a three-dimensional pharmacophore model and a docking/scoring routine. About 39,000 filtered compounds were docked with PLANTS and scored by Chemplp. Subsequent to virtual screening, 94 compounds, including 28 steroidal and 66 nonsteroidal compounds, were tested by an androgen receptor fluorescence polarization ligand displacement assay. As a result, 30 compounds were identified that show a relative binding affinity of more than 50% in comparison to 100 nM dihydrotestosterone and were classified as androgen receptor binders. For 11 androgen receptor binders of interest IC50 and Ki values were determined. The compound with the highest affinity exhibits a Ki value of 10.8 nM. Subsequent testing of the 11 compounds in a PC-3 and LNCaP multi readout proliferation assay provides insights into the potential mode of action. Further steroid receptor ligand displacement assays and docking studies on estrogen receptors α and ß, glucocorticoid receptor, and progesterone receptor gave information about the specificity of the 11 most active compounds.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Androgênios/farmacologia , Produtos Biológicos/farmacologia , Bases de Dados de Compostos Químicos , Avaliação Pré-Clínica de Medicamentos , Antagonistas de Receptores de Andrógenos/síntese química , Antagonistas de Receptores de Andrógenos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Ligantes , Receptores Androgênicos/metabolismo
17.
Eur Respir J ; 44(2): 447-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24743970

RESUMO

The lung constantly interacts with numerous pathogens. Thus, complex local immune defence mechanisms are essential to recognise and dispose of these intruders. This work describes the detection, characterisation and three-dimensional structure of a novel protein of the lung (surfactant-associated protein 3 (SFTA3/SP-H)) with putative immunological features. Bioinformatics, biochemical and immunological methods were combined to elucidate the structure and function of SFTA3. The tissue-specific detection and characterisation was performed by using electron microscopy as well as fluorescence imaging. Three-dimensional structure generation and analysis led to the development of specific antibodies and, as a consequence, to the localisation of a novel protein in human lung under consideration of cystic fibrosis, asthma and sepsis. In vitro experiments revealed that lipopolysaccharide induces expression of SFTA3 in the human lung alveolar type II cell line A549. By contrast, the inflammatory cytokines interleukin (IL)-1ß and IL-23 inhibit expression of SFTA3 in A549. Sequence- and structure-based prediction analysis indicated that the novel protein is likely to belong to the family of lung surfactant proteins. The results suggest that SFTA3 is an immunoregulatory protein of the lung with relevant protective functions during inflammation at the mucosal sites.


Assuntos
Sistema Imunitário/fisiologia , Pulmão/imunologia , Proteínas Associadas a Surfactantes Pulmonares/metabolismo , Tensoativos/química , Linhagem Celular Tumoral , Fibrose Cística/metabolismo , Citocinas/metabolismo , Éxons , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Inflamação , Interleucina-1beta/metabolismo , Interleucina-23/metabolismo , Lipopolissacarídeos/química , Pulmão/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Mucosa/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional
18.
Front Plant Sci ; 4: 260, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23908659

RESUMO

Putrescine N-methyltransferases (PMTs) are the first specific enzymes of the biosynthesis of nicotine and tropane alkaloids. PMTs transfer a methyl group onto the diamine putrescine from S-adenosyl-l-methionine (SAM) as coenzyme. PMT proteins have presumably evolved from spermidine synthases (SPDSs), which are ubiquitous enzymes of polyamine metabolism. SPDSs use decarboxylated SAM as coenzyme to transfer an aminopropyl group onto putrescine. In an attempt to identify possible and necessary steps in the evolution of PMT from SPDS, homology based modeling of Datura stramonium SPDS1 and PMT was employed to gain deeper insight in the preferred binding positions and conformations of the substrate and the alternative coenzymes. Based on predictions of amino acids responsible for the change of enzyme specificities, sites of mutagenesis were derived. PMT activity was generated in D. stramonium SPDS1 after few amino acid exchanges. Concordantly, Arabidopsis thaliana SPDS1 was mutated and yielded enzymes with both, PMT and SPDS activities. Kinetic parameters were measured for enzymatic characterization. The switch from aminopropyl to methyl transfer depends on conformational changes of the methionine part of the coenzyme in the binding cavity of the enzyme. The rapid generation of PMT activity in SPDS proteins and the wide-spread occurrence of putative products of N-methylputrescine suggest that PMT activity is present frequently in the plant kingdom.

19.
Mol Divers ; 17(3): 537-45, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23729025

RESUMO

A series of protected and reduced forms of model tetrapeptides that mimic the C-terminus of human thioredoxin reductases were obtained in good yields, using solid-phase peptide synthesis (SPPS). SPPS was performed on the Knorr Amide MBHA resin for Fmoc chemistry using especially protected cystein and selenocystein derivatives. All amino acids have been coupled according to the HBTU/HOBt/DIPEA method. Furthermore, the corresponding oxidized peptides containing eight-membered rings with intramolecular S-S and S-Se bridges were prepared via I[Formula: see text]/MeOH or DMSO/TFA oxidation, respectively.


Assuntos
Oligopeptídeos/síntese química , Selenocisteína/síntese química , Tiorredoxina Dissulfeto Redutase/metabolismo , Desenho de Fármacos , Humanos , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Oxirredução , Selenocisteína/química , Técnicas de Síntese em Fase Sólida , Sulfetos/química
20.
Biopolymers ; 96(5): 651-68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22180911

RESUMO

Peptoids are originally defined as N-substituted oligoglycine derivatives, and in a broader definition as N-substituted peptides (peptoid-peptide chimeras). Both types were systematically investigated by force field calculations. The Merck MMFF and YASARA2 force fields were shown to be, among others, the most suitable ones for conformational investigations of peptoids with no missing parameterizations, in contrast to AMBER or CHARMM. Ramachandran-like plots were calculated for dipeptoids and chimeras using energy calculations and grid searches by varying the dihedral angels PHI and PSI in steps of 10 degrees for s-cis- and s-trans amide bonds. Barriers as well as low energy conformations are compared to peptide Ramachandran plots, showing that peptoids have both, more barriers due to additional steric interactions as well as access to minimum conformations not accessible by peptides. Low energy conformations of dimers were used as starting conformations of higher oligomers of the peptoids for extensive molecular dynamics simulations over 10 or 20 ns with the YASARA2 force field and an explicit water solvent box to evaluate their potential to form secondary structural elements. Especially peptoids with aminoisobutyric acid-like monomer units were found to form left-handed or polyproline-like helices also known from less common natural peptides. Furthermore, new secondary structures appear feasible based on stable conformations outside the allowed areas of the Ramachandran plot for peptides, but allowed for peptoids.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos/química , Peptoides/química , Simulação por Computador , Estrutura Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA