Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(13): 7570-7590, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212379

RESUMO

Post-transcriptional modifications can impact the stability and functionality of many different classes of RNA molecules and are an especially important aspect of tRNA regulation. It is hypothesized that cells can orchestrate rapid responses to changing environmental conditions by adjusting the specific types and levels of tRNA modifications. We uncovered strong evidence in support of this tRNA global regulation hypothesis by examining effects of the well-conserved tRNA modifying enzyme MiaA in extraintestinal pathogenic Escherichia coli (ExPEC), a major cause of urinary tract and bloodstream infections. MiaA mediates the prenylation of adenosine-37 within tRNAs that decode UNN codons, and we found it to be crucial to the fitness and virulence of ExPEC. MiaA levels shifted in response to stress via a post-transcriptional mechanism, resulting in marked changes in the amounts of fully modified MiaA substrates. Both ablation and forced overproduction of MiaA stimulated translational frameshifting and profoundly altered the ExPEC proteome, with variable effects attributable to UNN content, changes in the catalytic activity of MiaA, or availability of metabolic precursors. Cumulatively, these data indicate that balanced input from MiaA is critical for optimizing cellular responses, with MiaA acting much like a rheostat that can be used to realign global protein expression patterns.


Assuntos
Alquil e Aril Transferases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli , Códon , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Humanos , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , RNA de Transferência/metabolismo , Virulência
2.
Nat Commun ; 11(1): 2803, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32499566

RESUMO

Host-associated reservoirs account for the majority of recurrent and oftentimes recalcitrant infections. Previous studies established that uropathogenic E. coli - the primary cause of urinary tract infections (UTIs) - can adhere to vaginal epithelial cells preceding UTI. Here, we demonstrate that diverse urinary E. coli isolates not only adhere to, but also invade vaginal cells. Intracellular colonization of the vaginal epithelium is detected in acute and chronic murine UTI models indicating the ability of E. coli to reside in the vagina following UTI. Conversely, in a vaginal colonization model, E. coli are detected inside vaginal cells and the urinary tract, indicating that vaginal colonization can seed the bladder. More critically, bacteria are identified inside vaginal cells from clinical samples from women with a history of recurrent UTI. These findings suggest that E. coli can establish a vaginal intracellular reservoir, where it may reside safely from extracellular stressors prior to causing an ascending infection.


Assuntos
Células Epiteliais/microbiologia , Escherichia coli Uropatogênica/patogenicidade , Vagina/microbiologia , Animais , Aderência Bacteriana , Infecções por Escherichia coli/microbiologia , Feminino , Camundongos , Camundongos Endogâmicos C3H , Microscopia de Fluorescência , Fagocitose , Bexiga Urinária/microbiologia , Sistema Urinário/microbiologia , Infecções Urinárias/microbiologia , Vagina/citologia
3.
Microbiologyopen ; 8(11): e915, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31496120

RESUMO

Bacterial colonization of the urogenital tract is limited by innate defenses, including the production of antimicrobial peptides (AMPs). Uropathogenic Escherichia coli (UPEC) resist AMP-killing to cause a range of urinary tract infections (UTIs) including asymptomatic bacteriuria, cystitis, pyelonephritis, and sepsis. UPEC strains have high genomic diversity and encode numerous virulence factors that differentiate them from non-UTI-causing strains, including ompT. As OmpT homologs cleave and inactivate AMPs, we hypothesized that UPEC strains from patients with symptomatic UTIs have high OmpT protease activity. Therefore, we measured OmpT activity in 58 clinical E. coli isolates. While heterogeneous OmpT activities were observed, OmpT activity was significantly greater in UPEC strains isolated from patients with symptomatic infections. Unexpectedly, UPEC strains exhibiting the greatest protease activities harbored an additional ompT-like gene called arlC (ompTp). The presence of two OmpT-like proteases in some UPEC isolates led us to compare the substrate specificities of OmpT-like proteases found in E. coli. While all three cleaved AMPs, cleavage efficiency varied on the basis of AMP size and secondary structure. Our findings suggest the presence of ArlC and OmpT in the same UPEC isolate may confer a fitness advantage by expanding the range of target substrates.


Assuntos
Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Escherichia coli/análise , Peptídeo Hidrolases/análise , Escherichia coli Uropatogênica/enzimologia , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Hidrólise , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Reação em Cadeia da Polimerase , Especificidade por Substrato , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Fatores de Virulência/análise , Fatores de Virulência/química , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
4.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28332311

RESUMO

Blue light irradiation (BLI) is an FDA-approved method for treating certain types of infections, like acne, and is becoming increasingly attractive as an antimicrobial strategy as the prevalence of antibiotic-resistant "superbugs" rises. However, no study has delineated the effectiveness of BLI throughout different bacterial growth phases, especially in more BLI-tolerant organisms such as Escherichia coli. While the vast majority of E. coli strains are nonpathogenic, several E. coli pathotypes exist that cause infection within and outside the gastrointestinal tract. Here, we compared the response of E. coli strains from five phylogenetic groups to BLI with a 455 nm wavelength (BLI455 ), using colony-forming unit and ATP measurement assays. Our results revealed that BLI455 is not bactericidal, but can retard E. coli growth in a manner that is dependent on culture age and strain background. This observation is critical, given that bacteria on and within mammalian hosts are found in different phases of growth.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Escherichia coli/efeitos da radiação , Luz , Viabilidade Microbiana/efeitos da radiação , Trifosfato de Adenosina/análise , Contagem de Colônia Microbiana
5.
Infect Immun ; 82(8): 3383-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24866805

RESUMO

Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and ß-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Doença de Crohn/microbiologia , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/imunologia , Peptídeo Hidrolases/metabolismo , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Escherichia coli/genética , Feminino , Deleção de Genes , Ilhas Genômicas , Humanos , Camundongos , Peptídeo Hidrolases/genética , Plasmídeos , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA