Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bone Rep ; 21: 101769, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38706522

RESUMO

The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.

2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396660

RESUMO

Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-KitW/KitW-v/J (KitW/W-v) mice were lethally irradiated. Irradiation was followed by adoptive transfer of 1000 purified WT hematopoietic stem cells (HSCs). The extent of immune reconstitution in blood, bone marrow, and lymph nodes in the irradiated mice was determined using HSCs from green fluorescent protein (GFP)-expressing mice. We also evaluated skeletal response to treatment. Detection of GFP-positive B and T cells in peripheral blood at 4 and 9 weeks following adoptive transfer and in bone marrow and lymph nodes following necropsy revealed excellent immune reconstitution in both WT and BMAT-deficient mice. Adipocytes were numerous in the distal femur of WT mice but absent or rare in KitW/W-v mice. Bone parameters, including length, mass, density, bone volume, microarchitecture, and turnover balance, exhibited few differences between WT and BMAT-deficient mice. The minimal differences suggest that BMAT is not required for reconstitution of the immune system following lethal radiation and is not a major contributor to the skeletal phenotypes of kit signaling-deficient mice.


Assuntos
Tecido Adiposo , Medula Óssea , Masculino , Animais , Camundongos , Medula Óssea/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Células-Tronco Hematopoéticas , Osso e Ossos
3.
Bone ; 176: 116888, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652285

RESUMO

The effect of diet-induced obesity on bone in rodents is variable, with bone mass increases, decreases, and no impact reported. The goal of this study was to evaluate whether the composition of obesogenic diet may influence bone independent of its effect on body weight. As proof-of-principle, we used a mouse model to compare the skeletal effects of a commonly used high fat 'Western' diet and a modified high fat diet. The modified high fat diet included ground English walnut and was isocaloric for macronutrients, but differed in fatty acid composition and contained nutrients (e.g. polyphenols) not present in the standard 'Western' diet. Eight-week-old mice were randomized into 1 of 3 dietary treatments (n = 8/group): (1) low fat control diet (LF; 10 % kcal fat); (2) high fat 'Western' diet (HF; 46 % kcal fat as soybean oil and lard); or (3) modified high fat diet supplemented with ground walnuts (HF + walnut; 46 % kcal fat as soybean oil, lard, and walnut) and maintained on their respective diets for 9 weeks. Bone response in femur was then evaluated using dual energy x-ray absorptiometry, microcomputed tomography, and histomorphometry. Consumption of both obesogenic diets resulted in increased weight gain but differed in impact on bone and bone marrow adiposity in distal femur metaphysis. Mice consuming the high fat 'Western' diet exhibited a tendency for lower cancellous bone volume fraction and connectivity density, and had lower osteoblast-lined bone perimeter (an index of bone formation) and higher bone marrow adiposity than low fat controls. Mice fed the modified high fat diet did not differ from mice fed control (low fat) diet in cancellous bone microarchitecture, or osteoblast-lined bone perimeter, and exhibited lower bone marrow adiposity compared to mice fed the 'Western' diet. This proof-of-principal study demonstrates that two obesogenic diets, similar in macronutrient distribution and induction of weight gain, can have different effects on cancellous bone in distal femur metaphysis. Because the composition of the diets used to induce obesity in rodents does not recapitulate a common human diet, our finding challenges the translatability of rodent studies evaluating the impact of diet-induced obesity on bone.


Assuntos
Dieta Hiperlipídica , Óleo de Soja , Animais , Masculino , Camundongos , Diáfises , Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Aumento de Peso , Microtomografia por Raio-X
4.
Front Endocrinol (Lausanne) ; 13: 959743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277726

RESUMO

Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump. Controls consisted of ad libitum (ad lib) fed mice and mice pair fed to match food intake of leptin-supplemented mice. The mice were maintained at 32°C for the duration of treatment. At necropsy, serum leptin in leptin-supplemented mice did not differ from ad lib mice, suggesting suppression of endogenous leptin production. In support, Ucp1 expression in BAT, percent body fat, and abdominal WAT mass were lower in leptin-supplemented mice. Leptin-supplemented mice also had lower BMAT and higher bone formation in distal femur metaphysis compared to the ad lib group, changes not replicated by pair-feeding. In the second experiment, BMAT response was evaluated in 6-week-old female B6 wild type (WT), leptin-deficient ob/ob and leptin-treated (0.3 µg/d) ob/ob mice housed at 32°C for the 2-week duration of the treatment. Compared to mice sacrificed at baseline (22°C), BMAT increased in ob/ob mice as well as WT mice, indicating a leptin independent response to increased temperature. However, infusion of ob/ob mice with leptin, at a dose rate having negligible effects on either energy metabolism or serum leptin levels, attenuated the increase in BMAT. In summary, increased housing temperature and increased leptin have independent but opposing effects on BMAT in mice.


Assuntos
Medula Óssea , Leptina , Camundongos , Feminino , Animais , Leptina/metabolismo , Medula Óssea/metabolismo , Temperatura , Adiposidade , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
5.
Mol Nutr Food Res ; 66(11): e2100974, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319818

RESUMO

SCOPE: A dose-ranging study is performed using young estrogen-depleted rats to determine whether dietary isoliquiritigenin (ILQ) alters bone metabolism and if the effects are associated with estrogen receptor signaling. METHODS AND RESULTS: Six-week-old rats (ovariectomized at 4 weeks of age) are fed diets containing 0, 100, 250, or 750 ppm ILQ (n = 5/treatment) for 7 days. Gene expression in femur and uterus, blood markers of bone turnover, body composition, and uterine weight and epithelial cell height are determined. Because ILQ lowers bone resorption, the effect of ILQ on in vitro differentiation of osteoclasts from bone marrow of mice is assessed. Treatment resulted in a dose-dependent increases in serum ILQ but no changes in serum osteocalcin, a marker of global bone formation. Contrastingly, ILQ administration results in reduced serum CTX-1, a marker of global bone resorption, and reduces tartrate resistant acid phosphatase expression in osteoclast culture. ILQ treatment and endogenous estrogen production had limited overlap on gene expression in femur and uterus. However, uterine epithelial cell hyperplasia is observed in two of five animals treated with 750 ppm. CONCLUSIONS: In conclusion, dietary ILQ reduces bone resorption in vivo and osteoclast differentiation in vitro, by mechanisms likely differing from actions of ovarian hormones.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular , Chalconas , Estrogênios/metabolismo , Feminino , Humanos , Camundongos , Ovariectomia , Ratos , Fosfatase Ácida Resistente a Tartarato/metabolismo , Fosfatase Ácida Resistente a Tartarato/farmacologia
6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202651

RESUMO

Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.


Assuntos
Restrição Calórica , Metabolismo Energético , Terapia Genética , Hipotálamo/metabolismo , Leptina/genética , Adipocinas/sangue , Adipocinas/genética , Adipocinas/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Biomarcadores , Peso Corporal , Medula Óssea/metabolismo , Dependovirus/genética , Ingestão de Energia , Metabolismo Energético/genética , Feminino , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Leptina/metabolismo , Ratos , Transgenes
7.
Alcohol ; 91: 53-59, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33358984

RESUMO

Chronic heavy alcohol use is often associated with reduced bone mineral density and altered bone turnover. However, the dose response effects of ethanol on bone turnover have not been established. This study examined the effects of graded increases of ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques (Macaca fascicularis). For this study, 6.6-year-old (95% CI: 6.5, 6.7) male macaques were subjected to three 30-day sessions of increased ethanol intake over a 90-day interval. During the first 30 days, the monkeys drank a predetermined volume of ethanol corresponding to 0.5 g/kg/day, followed by 1.0 g/kg/day and 1.5 g/kg/day. Osteocalcin, a marker of bone formation, and carboxyterminal cross-linking telopeptide of type 1 collagen (CTX), a marker of resorption, were measured during each 30-day session. In addition, the ratio of osteocalcin to CTX was determined as a surrogate measure of global turnover balance. Mean osteocalcin decreased by 2.6 ng/mL (1.8, 3.5) for each one-half unit (0.5 g/kg/day) increase in dose (p < 0.001). Mean CTX decreased by 0.13 ng/mL (0.06, 0.20) for each one-half unit increase in dose (p < 0.001). Furthermore, there was an inverse relationship between dose and the ratio of osteocalcin to CTX, such that the mean ratio decreased by 0.9 (0.3, 1.5) for each one-half unit increase in dose (p = 0.01). In summary, male cynomolgus macaques had decreased blood osteocalcin and CTX, and osteocalcin to CTX ratio during the 90-day interval of graded increases in ethanol consumption, indicative of reduced bone turnover and negative turnover balance, respectively. These findings suggest that over the range ingested, ethanol resulted in a linear decrease in bone turnover. Furthermore, the negative bone turnover balance observed is consistent with reported effects of chronic alcohol intake on the skeleton.


Assuntos
Consumo de Bebidas Alcoólicas , Densidade Óssea , Remodelação Óssea , Etanol/administração & dosagem , Animais , Biomarcadores , Colágeno Tipo I/metabolismo , Relação Dose-Resposta a Droga , Macaca fascicularis , Masculino , Osteocalcina/metabolismo , Peptídeos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-32256446

RESUMO

Growing female mice housed at room temperature (22°C) weigh the same but differ in body composition compared to mice housed at thermoneutrality (32°C). Specifically, mice housed at room temperature have lower levels of white adipose tissue (WAT). Additionally, bone marrow adipose tissue (bMAT) and cancellous bone volume fraction in distal femur metaphysis are lower in room temperature-housed mice. The metabolic changes induced by sub-thermoneutral housing are associated with lower leptin levels in serum and higher levels of Ucp1 gene expression in brown adipose tissue. Although the precise mechanisms mediating adaptation to sub-thermoneutral temperature stress remain to be elucidated, there is evidence that increased sympathetic nervous system activity acting via ß-adrenergic receptors plays an important role. We therefore evaluated the effect of the non-specific ß-blocker propranolol (primarily ß1 and ß2 antagonist) on body composition, femur microarchitecture, and bMAT in growing female C57BL/6 mice housed at either room temperature or thermoneutral temperature. As anticipated, cancellous bone volume fraction, WAT and bMAT were lower in mice housed at room temperature. Propranolol had small but significant effects on bone microarchitecture (increased trabecular number and decreased trabecular spacing), but did not attenuate premature bone loss induced by room temperature housing. In contrast, propranolol treatment prevented housing temperature-associated differences in WAT and bMAT. To gain additional insight, we evaluated a panel of genes in tibia, using an adipogenesis PCR array. Housing temperature and treatment with propranolol had exclusive as well as shared effects on gene expression. Of particular interest was the finding that room temperature housing reduced, whereas propranolol increased, expression of the gene for acetyl-CoA carboxylase (Acacb), the rate-limiting step for fatty acid synthesis and a key regulator of ß-oxidation. Taken together, these findings provide evidence that increased activation of ß1 and/or ß2 receptors contributes to reduced bMAT by regulating adipocyte metabolism, but that this pathway is unlikely to be responsible for premature cancellous bone loss in room temperature-housed mice.


Assuntos
Adipócitos/efeitos dos fármacos , Medula Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Propranolol/farmacologia , Temperatura , Aclimatação , Adipócitos/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Temperatura Corporal/fisiologia , Medula Óssea/metabolismo , Osso e Ossos/anatomia & histologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos
9.
Alcohol Clin Exp Res ; 43(11): 2301-2311, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31479513

RESUMO

BACKGROUND: Estrogen signaling is essential for the sexual dimorphism of the skeleton, is required for normal bone remodeling balance in adults, and may influence the skeletal response to alcohol. High levels of alcohol consumption lower bone mass in ovary-intact but not ovariectomized (ovx) rats. However, the extremely rapid rate of bone loss immediately following ovx may obscure the effects of alcohol. We therefore determined (i) whether heavy alcohol consumption (35% caloric intake) influences bone in sexually mature ovx rats with established cancellous osteopenia and (ii) whether ICI 182,780 (ICI), a potent estrogen receptor signaling antagonist, alters the skeletal response to alcohol. METHODS: Three weeks following ovx, rats were randomized into 5 groups, (i) baseline, (ii) control + vehicle, (iii) control + ICI, (iv) ethanol (EtOH) + vehicle, or (v) EtOH + ICI, and treated accordingly for 4 weeks. Dual-energy X-ray absorptiometry, microcomputed tomography, blood measurements of markers of bone turnover, and gene expression in femur and uterus were used to evaluate response to alcohol and ICI. RESULTS: Rats consuming alcohol had lower bone mass and increased fat mass. Bone microarchitecture of the tibia and gene expression in femur were altered; specifically, there was reduced accrual of cortical bone, net loss of cancellous bone, and differential expression of 19/84 genes related to bone turnover. Furthermore, osteocalcin, a marker of bone turnover, was lower in alcohol-fed rats. ICI had no effect on weight gain, body composition, or cortical bone. ICI reduced cancellous bone loss and serum CTX-1, a biochemical marker of bone resorption; alcohol antagonized the latter 2 responses. Neither alcohol nor ICI affected uterine weight or gene expression. CONCLUSIONS: Alcohol exaggerated bone loss in ovx rats in the presence or absence of estrogen receptor blockade with ICI. The negligible effect of alcohol on uterus and limited effects of ICI on bone in alcohol-fed ovx rats suggest that estrogen receptor signaling plays a limited role in the action of alcohol on bone in a rat model for chronic alcohol abuse.


Assuntos
Doenças Ósseas Metabólicas/induzido quimicamente , Osso e Ossos/efeitos dos fármacos , Antagonistas do Receptor de Estrogênio/uso terapêutico , Etanol/efeitos adversos , Fulvestranto/uso terapêutico , Ovariectomia/efeitos adversos , Absorciometria de Fóton , Animais , Densidade Óssea/efeitos dos fármacos , Doenças Ósseas Metabólicas/diagnóstico por imagem , Doenças Ósseas Metabólicas/prevenção & controle , Osso e Ossos/diagnóstico por imagem , Feminino , Ratos , Ratos Sprague-Dawley , Receptores de Estrogênio/antagonistas & inibidores , Microtomografia por Raio-X
10.
Alcohol Clin Exp Res ; 43(12): 2494-2503, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31557335

RESUMO

BACKGROUND: Chronic heavy alcohol consumption is an established risk factor for bone fracture, but comorbidities associated with alcohol intake may contribute to increased fracture rates in alcohol abusers. To address the specific effects of alcohol on bone, we used a nonhuman primate model and evaluated voluntary alcohol consumption on: (i) global markers of bone turnover in blood and (ii) cancellous bone mass, density, microarchitecture, turnover, and microdamage in lumbar vertebra. METHODS: Following a 4-month induction period, 6-year-old male rhesus macaques (Macaca mulatta, n = 13) voluntarily self-administered water or ethanol (EtOH; 4% w/v) for 22 h/d, 7 d/wk, for a total of 12 months. Control animals (n = 9) consumed an isocaloric maltose-dextrin solution. Tetracycline hydrochloride was administered orally 17 and 3 days prior to sacrifice to label mineralizing bone surfaces. Global skeletal response to EtOH was evaluated by measuring plasma osteocalcin and carboxyterminal collagen cross-links (CTX). Local response was evaluated in lumbar vertebra using dual-energy X-ray absorptiometry, microcomputed tomography, static and dynamic histomorphometry, and histological assessment of microdamage. RESULTS: Monkeys in the EtOH group consumed an average of 2.8 ± 0.2 (mean ± SE) g/kg/d of EtOH (30 ± 2% of total calories), resulting in an average blood EtOH concentration of 88.3 ± 8.8 mg/dl 7 hours after the session onset. Plasma CTX and osteocalcin tended to be lower in EtOH-consuming monkeys compared to controls. Significant differences in bone mineral density in lumbar vertebrae 1 to 4 were not detected with treatment. However, cancellous bone volume fraction (in cores biopsied from the central region of the third vertebral body) was lower in EtOH-consuming monkeys compared to controls. Furthermore, EtOH-consuming monkeys had lower osteoblast perimeter and mineralizing perimeter, no significant difference in osteoclast perimeter, and higher bone marrow adiposity than controls. No significant differences between groups were detected in microcrack density (2nd lumbar vertebra). CONCLUSIONS: Voluntary chronic heavy EtOH consumption reduces cancellous bone formation in lumbar vertebra by decreasing osteoblast-lined bone perimeter, a response associated with an increase in bone marrow adiposity.


Assuntos
Adiposidade/fisiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Medula Óssea/fisiopatologia , Osso Esponjoso/crescimento & desenvolvimento , Etanol/efeitos adversos , Animais , Densidade Óssea/efeitos dos fármacos , Colágeno/sangue , Etanol/sangue , Vértebras Lombares/efeitos dos fármacos , Macaca mulatta , Masculino , Osteocalcina/sangue
11.
Radiat Res ; 191(5): 413-427, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870097

RESUMO

Total-body irradiation (TBI) followed by transfer of bone marrow cells from donors is routinely performed in immunology research and can be used to manipulate differentiation and/or function of bone cells. However, exposure to high-dose radiation can result in irreversible osteopenia, and transfer of heterogeneous cell populations can complicate interpretation of results. The goal of this research was to establish an approach for reconstituting bone marrow using small numbers of purified donor-derived hematopoietic stem cells (HSCs) without negatively affecting bone metabolism. Gamma-irradiated (9 Gy) WBB6F1 mice were engrafted with bone marrow cells (5 × 106 cells) or purified HSCs (3,000 cells) obtained from GFP transgenic mice. In vivo analysis and in vitro differentiation assays performed two months later established that both methods were effective in reconstituting the hematopoietic compartment with donor-derived cells. We confirmed these findings by engrafting C57Bl/6 (B6) mice with bone marrow cells or purified HSCs from CD45.1 B6 congenic mice. We next performed adoptive transfer of purified HSCs (750 cells) into WBB6F1 and radiosensitive KitW/W-v mice and evaluated the skeleton two months later. Minimal differences were observed between controls and WBB6F1-engrafted mice that received fractionated doses of 2 × 5 Gy. Kitw/wv mice lost weight and became osteopenic after 2 × 5 Gy irradiations but these abnormalities were negligible after 5 Gy irradiation. Importantly, adoptive transfer of wild-type cells into Kitw/wv mice restored normal Kit expression in bone marrow. Together, these findings provide strong evidence for efficient engraftment with purified HSCs after lethal TBI with minimal collateral damage to bone. This approach will be useful for investigating mechanisms by which hematopoietic lineage cells regulate bone metabolism.


Assuntos
Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Animais , Osso e Ossos/metabolismo , Contagem de Células , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos da radiação , Osteocalcina/sangue
12.
J Endocrinol ; 236(2): 57-68, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29191939

RESUMO

Impaired resorption of cartilage matrix deposited during endochondral ossification is a defining feature of juvenile osteopetrosis. Growing, leptin-deficient ob/ob mice exhibit a mild form of osteopetrosis. However, the extent to which the disease is (1) self-limiting and (2) reversible by leptin treatment is unknown. We addressed the first question by performing histomorphometric analysis of femurs in rapidly growing (2-month-old), slowly growing (4-month-old) and skeletally mature (6-month-old) wild-type (WT) and ob/ob male mice. Absent by 6 months of age in WT mice, cartilage matrix persisted to varying extents in distal femur epiphysis, metaphysis and diaphysis in ob/ob mice, suggesting that the osteopetrotic phenotype is not entirely self-limiting. To address the second question, we employed hypothalamic recombinant adeno-associated virus (rAAV) gene therapy to restore leptin signaling in ob/ob mice. Two-month-old mice were randomized to one of the three groups: (1) untreated control, (2) rAAV-Leptin or (3) control vector rAAV-green fluorescent protein and vectors injected intracerebroventricularly. Seven months later, rAAV-leptin-treated mice exhibited no cartilage in the metaphysis and greatly reduced cartilage in the epiphysis and diaphysis. At the cellular level, the reduction in cartilage was associated with increased bone turnover. These findings (1) support the concept that leptin is important for normal replacement of cartilage by bone, and (2) demonstrate that osteopetrosis in ob/ob mice is bone-compartment-specific and reversible by leptin at skeletal sites capable of undergoing robust bone turnover.


Assuntos
Terapia Genética/métodos , Hipotálamo/metabolismo , Leptina/genética , Obesidade/terapia , Osteopetrose/terapia , Animais , Densidade Óssea/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/genética , Osteoclastos/fisiologia , Osteopetrose/complicações , Osteopetrose/genética
13.
PLoS One ; 12(7): e0180886, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750038

RESUMO

Breast cancer metastasizes to bone in the majority of patients with advanced disease. We investigated the effects of inadequate dietary calcium (Ca) on bone turnover, tumor growth, and bone response to tumor in tibia inoculated with 4T1 mammary carcinoma cells. Nine-month-old female Balb/c mice were placed on an adequate Ca (5 g/kg diet, n = 30) or low Ca (80 mg/kg diet, n = 31) diet for 14 days, then injected intratibially with 1,000 4T1 cells (transfected with luciferase for bioluminescence imaging), and sacrificed at 5, 10, or 21 days post-inoculation (n = 7-10 mice/group). Control mice (n = 6/group) were injected with carrier and sacrificed at 10 days post-inoculation. Tibiae with muscle intact were excised and evaluated by microcomputed tomography and histology. In vivo bioluminescent imaging revealed that 4T1 cells metastasized to lung. Therefore, lungs were removed for quantification of tumor. Mice fed low Ca exhibited higher bone turnover and higher tibial lesion scores than mice fed adequate Ca. Lesion severity, manifested as cortical osteolysis and periosteal woven bone formation, and tumor cell infiltration to muscle, increased with time, irrespective of diet. However, for most skeletal endpoints the rates of increase were greater in mice consuming low Ca compared to mice consuming adequate Ca. Infiltration of tumor cells into adjacent muscle, but not metastasis to lung, was also greater in mice consuming low Ca diet. The findings suggest that high bone turnover due to Ca insufficiency results in greater local mammary tumor cell growth, cortical osteolysis, woven bone formation, and invasion to muscle in mice.


Assuntos
Cálcio da Dieta/farmacologia , Neoplasias Mamárias Animais/patologia , Tíbia/patologia , Carga Tumoral/efeitos dos fármacos , Animais , Remodelação Óssea/efeitos dos fármacos , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Tíbia/diagnóstico por imagem , Tíbia/efeitos dos fármacos , Microtomografia por Raio-X
14.
J Endocrinol ; 233(3): 357-367, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28428364

RESUMO

Leptin, critical in regulation of energy metabolism, is also important for normal bone growth, maturation and turnover. Compared to wild type (WT) mice, bone mass is lower in leptin-deficient ob/ob mice. Osteopenia in growing ob/ob mice is due to decreased bone accrual, and is associated with reduced longitudinal bone growth, impaired cancellous bone maturation and increased marrow adipose tissue (MAT). However, leptin deficiency also results in gonadal dysfunction, disrupting production of gonadal hormones which regulate bone growth and turnover. The present study evaluated the role of increased estrogen in mediating the effects of leptin on bone in ob/ob mice. Three-month-old female ob/ob mice were randomized into one of the 3 groups: (1) ob/ob + vehicle (veh), (2) ob/ob + leptin (leptin) or (3) ob/ob + leptin and the potent estrogen receptor antagonist ICI 182,780 (leptin + ICI). Age-matched WT mice received vehicle. Leptin (40 µg/mouse, daily) and ICI (10 µg/mouse, 2×/week) were administered by subcutaneous injection for 1 month and bone analyzed by X-ray absorptiometry, microcomputed tomography and static and dynamic histomorphometry. Uterine weight did not differ between ob/ob mice and ob/ob mice receiving leptin + ICI, indicating that ICI successfully blocked the uterine response to leptin-induced increases in estrogen levels. Compared to leptin-treated ob/ob mice, ob/ob mice receiving leptin + ICI had lower uterine weight; did not differ in weight loss, MAT or bone formation rate; and had higher longitudinal bone growth rate and cancellous bone volume fraction. We conclude that increased estrogen signaling following leptin treatment is dispensable for the positive actions of leptin on bone and may attenuate leptin-induced bone growth.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Leptina/farmacocinética , Osteogênese/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Densidade Óssea/efeitos dos fármacos , Feminino , Camundongos
15.
Sci Rep ; 7: 46325, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28402337

RESUMO

Bone marrow adipose tissue (MAT) is negatively associated with bone mass. Since osteoblasts and adipocytes are derived from the same precursor cells, adipocyte differentiation may occur at the expense of osteoblast differentiation. We used MAT-deficient KitW/W-v (MAT-) mice to determine if absence of MAT reduced bone loss in hindlimb-unloaded (HU) mice. Male MAT- and wild-type (WT) mice were randomly assigned to a baseline, control or HU group (n = 10 mice/group) within each genotype and HU groups unloaded for 2 weeks. Femurs were evaluated using micro-computed tomography, histomorphometry and targeted gene profiling. MAT- mice had a greater reduction in bone volume fraction after HU than did WT mice. HU MAT- mice had elevated cancellous bone formation and resorption compared to other treatment groups as well as a unique profile of differentially expressed genes. Adoptive transfer of WT bone marrow-derived hematopoietic stem cells reconstituted c-kit but not MAT in KitW/W-v mice. The MAT- WT → KitW/W-v mice lost cancellous bone following 2 weeks of HU. In summary, results from this study suggest that MAT deficiency was not protective, and was associated with exaggerated disuse-induced cancellous bone loss.


Assuntos
Tecido Adiposo/patologia , Perda do Osso Alveolar/etiologia , Perda do Osso Alveolar/patologia , Medula Óssea/patologia , Perda do Osso Alveolar/diagnóstico por imagem , Animais , Fenômenos Biomecânicos , Densidade Óssea , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Genótipo , Elevação dos Membros Posteriores/efeitos adversos , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Transcriptoma , Microtomografia por Raio-X
16.
Artigo em Inglês | MEDLINE | ID: mdl-27579023

RESUMO

Low bone mass is often associated with elevated bone marrow adiposity. Since osteoblasts and adipocytes are derived from the same mesenchymal stem cell (MSC) progenitor, adipocyte formation may increase at the expense of osteoblast formation. Leptin is an adipocyte-derived hormone known to regulate energy and bone metabolism. Leptin deficiency and high-fat diet-induced obesity are associated with increased marrow adipose tissue (MAT) and reduced bone formation. Short-duration studies suggest that leptin treatment reduces MAT and increases bone formation in leptin-deficient ob/ob mice fed a regular diet. Here, we determined the long-duration impact of increased hypothalamic leptin on marrow adipocytes and osteoblasts in ob/ob mice following recombinant adeno-associated virus (rAAV) gene therapy. Eight- to 10-week-old male ob/ob mice were randomized into four groups: (1) untreated, (2) rAAV-Lep, (3) rAAV-green fluorescent protein (rAAV-GFP), or (4) pair-fed to rAAV-Lep. For vector administration, mice were injected intracerebroventricularly with either rAAV-leptin gene therapy (rAAV-Lep) or rAAV-GFP (9 × 10(7) particles) and maintained for 30 weeks. In a second study, the impact of increased hypothalamic leptin levels on MAT was determined in mice fed high-fat diets; ob/ob mice were randomized into two groups and treated with either rAAV-Lep or rAAV-GFP. At 7 weeks post-vector administration, half the mice in each group were switched to a high-fat diet for 8 weeks. Wild-type (WT) controls included age-matched mice fed regular or high-fat diet. High-fat diet resulted in a threefold increase in MAT in WT mice, whereas MAT was increased by leptin deficiency up to 50-fold. Hypothalamic leptin gene therapy increased osteoblast perimeter and osteoclast perimeter with minor change in cancellous bone architecture. The gene therapy decreased MAT levels in ob/ob mice fed regular or high-fat diet to values similar to WT mice fed regular diet. These findings suggest that leptin plays an important role in regulating the differentiation of MSCs to adipocytes and osteoblasts, a process that may be dysregulated by high-fat diet. However, the results also illustrate that reducing MAT by increasing leptin levels does not necessarily result in increased bone mass.

17.
NPJ Microgravity ; 2: 16016, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725730

RESUMO

There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts.

18.
J Endocrinol ; 227(3): 129-41, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26487675

RESUMO

Excessive weight gain in adults is associated with a variety of negative health outcomes. Unfortunately, dieting, exercise, and pharmacological interventions have had limited long-term success in weight control and can result in detrimental side effects, including accelerating age-related cancellous bone loss. We investigated the efficacy of using hypothalamic leptin gene therapy as an alternative method for reducing weight in skeletally-mature (9 months old) female rats and determined the impact of leptin-induced weight loss on bone mass, density, and microarchitecture, and serum biomarkers of bone turnover (CTx and osteocalcin). Rats were implanted with cannulae in the 3rd ventricle of the hypothalamus and injected with either recombinant adeno-associated virus encoding the gene for rat leptin (rAAV-Leptin, n=7) or a control vector encoding green fluorescent protein (rAAV-GFP, n=10) and sacrificed 18 weeks later. A baseline control group (n=7) was sacrificed at vector administration. rAAV-Leptin-treated rats lost weight (-4±2%) while rAAV-GFP-treated rats gained weight (14±2%) during the study. At study termination, rAAV-Leptin-treated rats weighed 17% less than rAAV-GFP-treated rats and had lower abdominal white adipose tissue weight (-80%), serum leptin (-77%), and serum IGF1 (-34%). Cancellous bone volume fraction in distal femur metaphysis and epiphysis, and in lumbar vertebra tended to be lower (P<0.1) in rAAV-GFP-treated rats (13.5 months old) compared to baseline control rats (9 months old). Significant differences in cancellous bone or biomarkers of bone turnover were not detected between rAAV-Leptin and rAAV-GFP rats. In summary, rAAV-Leptin-treated rats maintained a lower body weight compared to baseline and rAAV-GFP-treated rats with minimal effects on bone mass, density, microarchitecture, or biochemical markers of bone turnover.


Assuntos
Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Terapia Genética/métodos , Hipotálamo/efeitos dos fármacos , Leptina/uso terapêutico , Animais , Feminino , Fator de Crescimento Insulin-Like I/metabolismo , Leptina/sangue , Leptina/farmacologia , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/terapia , Ratos , Ratos Sprague-Dawley , Redução de Peso/efeitos dos fármacos
19.
Anat Rec (Hoboken) ; 298(12): 2018-29, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26370912

RESUMO

Morbidly obese, leptin-deficient ob/ob mice display low bone mass, mild osteoclast-rich osteopetrosis, and increased bone marrow adiposity. While partial leptin deficiency results in increased weight, the skeletal manifestations of partial leptin deficiency are less well defined. We therefore analyzed femora and lumbar vertebrae in growing (7-week-old) female C57BL/6 wildtype (WT) mice, partial leptin-deficient ob/+ mice, and leptin-deficient ob/ob mice. The bones were evaluated by dual energy absorptiometry, microcomputed tomography and histomorphometry. As expected, ob/+ mice were heavier, had more white adipose tissue, and lower serum leptin than WT mice, but were lighter and had less white adipose tissue than ob/ob mice. With a few exceptions, cancellous bone architecture, cell (osteoblast, osteoclast, and adipocyte), and dynamic measurements did not differ between WT and ob/+ mice. In contrast, compared to WT and ob/+ mice, ob/ob mice had lower cancellous bone volume fraction, and higher bone marrow adiposity in the femur metaphysis, and higher cancellous bone volume fraction in lumbar vertebra. Paradoxically, ob/+ mice had greater femoral bone volume than either WT or ob/ob mice. There was a positive correlation between body weight and femur volume in all three genotypes. However, the positive effect of weight on bone occurred with lower body weight in leptin-producing mice. The paradoxical differences in bone size among WT, ob/+, and ob/ob mice may be explained if leptin, in addition to stimulating bone growth and cancellous bone turnover, acts to lower the set-point at which increased body weight leads to a commensurate increase in bone size.


Assuntos
Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Leptina/deficiência , Animais , Peso Corporal/fisiologia , Densidade Óssea/fisiologia , Medula Óssea/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
20.
Stat Med ; 34(30): 3997-4015, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26239173

RESUMO

A novel semiparametric regression model is developed for evaluating the covariate-specific accuracy of a continuous medical test or biomarker. Ideally, studies designed to estimate or compare medical test accuracy will use a separate, flawless gold-standard procedure to determine the true disease status of sampled individuals. We treat this as a special case of the more complicated and increasingly common scenario in which disease status is unknown because a gold-standard procedure does not exist or is too costly or invasive for widespread use. To compensate for missing data on disease status, covariate information is used to discriminate between diseased and healthy units. We thus model the probability of disease as a function of 'disease covariates'. In addition, we model test/biomarker outcome data to depend on 'test covariates', which provides researchers the opportunity to quantify the impact of covariates on the accuracy of a medical test. We further model the distributions of test outcomes using flexible semiparametric classes. An important new theoretical result demonstrating model identifiability under mild conditions is presented. The modeling framework can be used to obtain inferences about covariate-specific test accuracy and the probability of disease based on subject-specific disease and test covariate information. The value of the model is illustrated using multiple simulation studies and data on the age-adjusted ability of soluble epidermal growth factor receptor - a ubiquitous serum protein - to serve as a biomarker of lung cancer in men. SAS code for fitting the model is provided. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Modelos Estatísticos , Análise de Regressão , Teorema de Bayes , Biomarcadores Tumorais/sangue , Bioestatística , Simulação por Computador , Receptores ErbB/sangue , Humanos , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/diagnóstico , Masculino , Curva ROC , Medição de Risco/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA