Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 7(1): 183, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152201

RESUMO

PTPN2 (protein tyrosine phosphatase non-receptor type 2, or TC-PTP) and PTPN1 are attractive immuno-oncology targets, with the deletion of Ptpn1 and Ptpn2 improving response to immunotherapy in disease models. Targeted protein degradation has emerged as a promising approach to drug challenging targets including phosphatases. We developed potent PTPN2/N1 dual heterobifunctional degraders (Cmpd-1 and Cmpd-2) which facilitate efficient complex assembly with E3 ubiquitin ligase CRL4CRBN, and mediate potent PTPN2/N1 degradation in cells and mice. To provide mechanistic insights into the cooperative complex formation introduced by degraders, we employed a combination of structural approaches. Our crystal structure reveals how PTPN2 is recognized by the tri-substituted thiophene moiety of the degrader. We further determined a high-resolution structure of DDB1-CRBN/Cmpd-1/PTPN2 using single-particle cryo-electron microscopy (cryo-EM). This structure reveals that the degrader induces proximity between CRBN and PTPN2, albeit the large conformational heterogeneity of this ternary complex. The molecular dynamic (MD)-simulations constructed based on the cryo-EM structure exhibited a large rigid body movement of PTPN2 and illustrated the dynamic interactions between PTPN2 and CRBN. Together, our study demonstrates the development of PTPN2/N1 heterobifunctional degraders with potential applications in cancer immunotherapy. Furthermore, the developed structural workflow could help to understand the dynamic nature of degrader-induced cooperative ternary complexes.

2.
Nat Commun ; 15(1): 1842, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418456

RESUMO

Human papillomavirus (HPV) is a significant contributor to the global cancer burden, and its carcinogenic activity is facilitated in part by the HPV early protein 6 (E6), which interacts with the E3-ligase E6AP, also known as UBE3A, to promote degradation of the tumor suppressor, p53. In this study, we present a single-particle cryoEM structure of the full-length E6AP protein in complex with HPV16 E6 (16E6) and p53, determined at a resolution of ~3.3 Å. Our structure reveals extensive protein-protein interactions between 16E6 and E6AP, explaining their picomolar binding affinity. These findings shed light on the molecular basis of the ternary complex, which has been pursued as a potential therapeutic target for HPV-driven cervical, anal, and oropharyngeal cancers over the last two decades. Understanding the structural and mechanistic underpinnings of this complex is crucial for developing effective therapies to combat HPV-induced cancers. Our findings may help to explain why previous attempts to disrupt this complex have failed to generate therapeutic modalities and suggest that current strategies should be reevaluated.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Humanos , Proteína Supressora de Tumor p53/metabolismo , Papillomavirus Humano 16/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Oncogênicas Virais/genética , Genes Supressores de Tumor
3.
Neuron ; 110(22): 3711-3726.e16, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36087583

RESUMO

Axon degeneration is an early pathological event in many neurological diseases. The identification of the nicotinamide adenine dinucleotide (NAD) hydrolase SARM1 as a central metabolic sensor and axon executioner presents an exciting opportunity to develop novel neuroprotective therapies that can prevent or halt the degenerative process, yet limited progress has been made on advancing efficacious inhibitors. We describe a class of NAD-dependent active-site SARM1 inhibitors that function by intercepting NAD hydrolysis and undergoing covalent conjugation with the reaction product adenosine diphosphate ribose (ADPR). The resulting small-molecule ADPR adducts are highly potent and confer compelling neuroprotection in preclinical models of neurological injury and disease, validating this mode of inhibition as a viable therapeutic strategy. Additionally, we show that the most potent inhibitor of CD38, a related NAD hydrolase, also functions by the same mechanism, further underscoring the broader applicability of this mechanism in developing therapies against this class of enzymes.


Assuntos
Proteínas do Domínio Armadillo , NAD , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , NAD/metabolismo , Neuroproteção , Proteínas do Citoesqueleto/metabolismo , Axônios/metabolismo , Hidrolases/metabolismo
4.
Cell Rep ; 32(5): 107999, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32755591

RESUMO

The NADase SARM1 is a central switch in injury-activated axon degeneration, an early hallmark of many neurological diseases. Here, we present cryo-electron microscopy (cryo-EM) structures of autoinhibited (3.3 Å) and active SARM1 (6.8 Å) and provide mechanistic insight into the tight regulation of SARM1's function by the local metabolic environment. Although both states retain an octameric core, the defining feature of the autoinhibited state is a lock between the autoinhibitory Armadillo/HEAT motif (ARM) and catalytic Toll/interleukin-1 receptor (TIR) domains, which traps SARM1 in an inactive state. Mutations that break this lock activate SARM1, resulting in catastrophic neuronal death. Notably, the mutants cannot be further activated by the endogenous activator nicotinamide mononucleotide (NMN), and active SARM1 is product inhibited by Nicotinamide (NAM), highlighting SARM1's functional dependence on key metabolites in the NAD salvage pathway. Our studies provide a molecular understanding of SARM1's transition from an autoinhibited to an injury-activated state and lay the foundation for future SARM1-based therapies to treat axonopathies.


Assuntos
Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , NAD/metabolismo , Animais , Morte Celular , Linhagem Celular Tumoral , Microscopia Crioeletrônica , Feminino , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/citologia , Mononucleotídeo de Nicotinamida/metabolismo , Domínios Proteicos
5.
Sci Rep ; 8(1): 9092, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904056

RESUMO

Polycomb repressive complex 2 (PRC2) mediates trimethylation of histone H3K27 (H3K27me3), an epigenetic hallmark for repressed chromatin. Overactive mutants of the histone lysine methyltransferase subunit of PRC2, Ezh2, are found in various types of cancers. Pyridone-containing inhibitors such as GSK126 compete with S-adenosylmethionine (SAM) for Ezh2 binding and effectively inhibit PRC2 activity. PRC2 from the thermophilic fungus Chaetomium thermophilum (ct) is functionally similar to the human version in several regards and has the added advantage of producing high-resolution crystal structures, although inhibitor-bound structures of human or human/chameleon PRC2 are also available at up to 2.6 Å resolution. We solved crystal structures of both human and ctPRC2 bound to GSK126 and the structurally similar inhibitor GSK343. While the two organisms feature a disparate degree of inhibitor potency, surprisingly, GSK126 binds in a similar manner in both structures. Structure-guided protein engineering of the drug binding pocket allowed us to introduce humanizing mutations into ctEzh2 to produce a ctPRC2 variant that is more susceptible to GSK126 inhibition. Additional analysis indicated that an evolutionarily conserved structural platform dictates a unique mode of GSK126 binding, suggesting a mechanism of drug selectivity. The existing drug scaffold may thus be used to probe the function and cellular regulation of PRC2 in a wide spectrum of organisms, ranging from fungi to humans.


Assuntos
Chaetomium/classificação , Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas Fúngicas , Piridonas/química , Sítios de Ligação , Cristalografia por Raios X , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Humanos
6.
J Biol Chem ; 292(32): 13323-13332, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28607149

RESUMO

Polycomb-group proteins control many fundamental biological processes, such as anatomical development in mammals and vernalization in plants. Polycomb repressive complex 2 (PRC2) is responsible for methylation of histone H3 lysine 27 (H3K27), and trimethylated H3K27 (H3K27me3) is implicated in epigenetic gene silencing. Recent genomic, biochemical, and structural data indicate that PRC2 is broadly conserved from yeast to human in many aspects. Here, we determined the crystal structure of an apo-PRC2 from the fungus Chaetomium thermophilum captured in a bona fide autoinhibited state, which represents a novel conformation of PRC2 associated with enzyme regulation in light of the basal and stimulated states that we reported previously. We found that binding by the cofactor S-adenosylmethionine mitigates this autoinhibited structural state. Using steady-state enzyme kinetics, we also demonstrated that disrupting the autoinhibition results in a vastly activated enzyme complex. Autoinhibition provides a novel structural platform that may enable control of PRC2 activity in response to diverse transcriptional states and chromatin contexts and set a ground state to allow PRC2 activation by other cellular mechanisms as well.


Assuntos
Chaetomium/enzimologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Modelos Moleculares , Processamento de Proteína Pós-Traducional , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Sequência Conservada , Proteína Potenciadora do Homólogo 2 de Zeste/química , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Histonas/química , Lisina/metabolismo , Metilação , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Complexo Repressor Polycomb 2/química , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , S-Adenosilmetionina/química , Proteínas de Xenopus/química , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo
7.
Science ; 336(6089): 1726-9, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22745434

RESUMO

Rrp44 (Dis3) is a key catalytic subunit of the yeast exosome complex and can processively digest structured RNA one nucleotide at a time in the 3' to 5' direction. Its motor function is powered by the energy released from the hydrolytic nuclease reaction instead of adenosine triphosphate hydrolysis as in conventional helicases. Single-molecule fluorescence analysis revealed that instead of unwinding RNA in single base pair steps, Rrp44 accumulates the energy released by multiple single nucleotide step hydrolysis reactions until about four base pairs are unwound in a burst. Kinetic analyses showed that RNA unwinding, not cleavage or strand release, determines the overall RNA degradation rate and that the unwinding step size is determined by the nonlinear elasticity of the Rrp44/RNA complex, but not by duplex stability.


Assuntos
Exorribonucleases/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Pareamento de Bases , Complexo Multienzimático de Ribonucleases do Exossomo , RNA Fúngico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA