Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(3): 917-934, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-37843921

RESUMO

Proline dehydrogenase (ProDH) and pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDH) catalyse the oxidation of proline into glutamate via the intermediates P5C and glutamate-semialdehyde (GSA), which spontaneously interconvert. P5C and GSA are also intermediates in the production of glutamate from ornithine and α-ketoglutarate catalysed by ornithine δ-aminotransferase (OAT). ProDH and P5CDH form a fused bifunctional PutA enzyme in Gram-negative bacteria and are associated in a bifunctional substrate-channelling complex in Thermus thermophilus; however, the physical proximity of ProDH and P5CDH in eukaryotes has not been described. Here, we report evidence of physical proximity and interactions between Arabidopsis ProDH, P5CDH, and OAT in the mitochondria of plants during dark-induced leaf senescence when all three enzymes are expressed. Pairwise interactions and localization of the three enzymes were investigated using bimolecular fluorescence complementation with confocal microscopy in tobacco and sub-mitochondrial fractionation in Arabidopsis. Evidence for a complex composed of ProDH, P5CDH, and OAT was revealed by co-migration of the proteins in native conditions upon gel electrophoresis. Co-immunoprecipitation coupled with mass spectrometry analysis confirmed the presence of the P5C metabolism complex in Arabidopsis. Pull-down assays further demonstrated a direct interaction between ProDH1 and P5CDH. P5C metabolism complexes might channel P5C among the constituent enzymes and directly provide electrons to the respiratory electron chain via ProDH.


Assuntos
Arabidopsis , Pirróis , Arabidopsis/metabolismo , Prolina Oxidase/química , Prolina Oxidase/metabolismo , Mitocôndrias/metabolismo , Glutamatos/metabolismo , Ornitina/metabolismo , Prolina/metabolismo
2.
Plant Physiol ; 190(3): 1896-1914, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-35976139

RESUMO

European mistletoe (Viscum album) is known for its special mode of cellular respiration. It lacks the mitochondrial NADH dehydrogenase complex (Complex I of the respiratory chain) and has restricted capacities to generate mitochondrial adenosine triphosphate (ATP). Here, we present an investigation of the V. album energy metabolism taking place in chloroplasts. Thylakoids were purified from young V. album leaves, and membrane-bound protein complexes were characterized by Blue native polyacrylamide gel electrophoresis as well as by the complexome profiling approach. Proteins were systematically identified by label-free quantitative shotgun proteomics. We identified >1,800 distinct proteins (accessible at https://complexomemap.de/va_leaves), including nearly 100 proteins forming part of the protein complexes involved in the light-dependent part of photosynthesis. The photosynthesis apparatus of V. album has distinct features: (1) comparatively low amounts of Photosystem I; (2) absence of the NDH complex (the chloroplast pendant of mitochondrial Complex I involved in cyclic electron transport (CET) around Photosystem I); (3) reduced levels of the proton gradient regulation 5 (PGR5) and proton gradient regulation 5-like 1 (PGRL1) proteins, which offer an alternative route for CET around Photosystem I; (4) comparable amounts of Photosystem II and the chloroplast ATP synthase complex to other seed plants. Our data suggest a restricted capacity for chloroplast ATP biosynthesis by the photophosphorylation process. This is in addition to the limited ATP supply by the mitochondria. We propose a view on mistletoe's mode of life, according to which its metabolism relies to a greater extent on energy-rich compounds provided by the host trees.


Assuntos
Proteínas de Arabidopsis , Viscum album , Complexo de Proteína do Fotossistema I/metabolismo , Viscum album/metabolismo , Proteínas de Arabidopsis/metabolismo , Prótons , Fotossíntese , Transporte de Elétrons , Cloroplastos/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Front Plant Sci ; 9: 1381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30283487

RESUMO

The sulfur dioxygenase ETHE1 oxidizes persulfides in the mitochondrial matrix and is involved in the degradation of L-cysteine and hydrogen sulfide. ETHE1 has an essential but as yet undefined function in early embryo development of Arabidopsis thaliana. In leaves, ETHE1 is strongly induced by extended darkness and participates in the use of amino acids as alternative respiratory substrates during carbohydrate starvation. Thus, we tested the effect of darkness on seed development in an ETHE1 deficient mutant in comparison to the wild type. Since ETHE1 knock-out is embryo lethal, the knock-down line ethe1-1 with about 1% residual sulfur dioxygenase activity was used for this study. We performed phenotypic analysis, metabolite profiling and comparative proteomics in order to investigate the general effect of extended darkness on seed metabolism and further define the specific function of the mitochondrial sulfur dioxygenase ETHE1 in seeds. Shading of the siliques had no morphological effect on embryogenesis in wild type plants. However, the developmental delay that was already visible in ethe1-1 seeds under control conditions was further enhanced in the darkness. Dark conditions strongly affected seed quality parameters of both wild type and mutant plants. The effect of ETHE1 knock-down on amino acid profiles was clearly different from that found in leaves indicating that in seeds persulfide oxidation interacts with alanine and glycine rather than branched-chain amino acid metabolism. Sulfur dioxygenase deficiency led to defects in endosperm development possibly due to alterations in the cellularization process. In addition, we provide evidence for a potential role of persulfide metabolism in abscisic acid (ABA) signal transduction in seeds. We conclude that the knock-down of ETHE1 causes metabolic re-arrangements in seeds that differ from those in leaves. Putative mechanisms that cause the aberrant endosperm and embryo development are discussed.

4.
Dev Comp Immunol ; 67: 1-7, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27810283

RESUMO

Tomato spotted wilt virus (TSWV) is mainly vectored by Frankliniella occidentalis Pergande, and it potentially activates the vector's immune response. However, molecular background of the altered immune response is not clearly understood. Therefore, using a proteomic approach, we investigated the immune pathways that are activated in F. occidentalis larvae after 24 h exposure to TSWV. Two-dimensional isoelectric focusing/sodium dodecyl sulfate polyacrylamide gel electrophoresis (2D-IEF/SDS/PAGE) combined with mass spectrometry (MS), were used to identify proteins that were differentially expressed upon viral infection. High numbers of proteins were abundantly expressed in F. occidentalis exposed to TSWV (73%) compared to the non-exposed (27%), with the majority functionally linked to the innate immune system such as: signaling, stress response, defense response, translation, cellular lipids and nucleotide metabolism. Key proteins included: 70 kDa heat shock proteins, Ubiquitin and Dermcidin, among others, indicative of a responsive pattern of the vector's innate immune system to viral infection.


Assuntos
Vetores Artrópodes/imunologia , Tisanópteros/imunologia , Tospovirus/imunologia , Animais , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Imunidade Inata/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva , Metabolismo dos Lipídeos/genética , Espectrometria de Massas , Peptídeos/genética , Peptídeos/metabolismo , Proteômica , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
5.
Biochem J ; 473(17): 2623-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27303048

RESUMO

Proline accumulates in many plant species in response to environmental stresses. Upon relief from stress, proline is rapidly oxidized in mitochondria by proline dehydrogenase (ProDH) and then by pyrroline-5-carboxylate dehydrogenase (P5CDH). Two ProDH genes have been identified in the genome of the model plant Arabidopsis thaliana To gain a better understanding of ProDH1 functions in mitochondria, proteomic analysis was performed. ProDH1 polypeptides were identified in Arabidopsis mitochondria by immunoblotting gels after 2D blue native (BN)-SDS/PAGE, probing them with an anti-ProDH antibody and analysing protein spots by MS. The 2D gels showed that ProDH1 forms part of a low-molecular-mass (70-140 kDa) complex in the mitochondrial membrane. To evaluate the contribution of each isoform to proline oxidation, mitochondria were isolated from wild-type (WT) and prodh1, prodh2, prodh1prodh2 and p5cdh mutants. ProDH activity was high for genotypes in which ProDH, most likely ProDH1, was strongly induced by proline. Respiratory measurements indicate that ProDH1 has a role in oxidizing excess proline and transferring electrons to the respiratory chain.


Assuntos
Arabidopsis/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Prolina Oxidase/metabolismo , Prolina/metabolismo , Proteoma , Arabidopsis/enzimologia , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas
6.
Physiol Plant ; 157(3): 352-66, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27105581

RESUMO

Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Cisteína/metabolismo , Dioxigenases/metabolismo , Redes e Vias Metabólicas , Sulfurtransferases/metabolismo , Aminoácidos/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cisteína/análogos & derivados , Dioxigenases/genética , Metabolismo Energético , Glutationa/metabolismo , Mitocôndrias/metabolismo , Mutagênese Insercional , Ácido Pirúvico/metabolismo , Sementes/embriologia , Sementes/enzimologia , Sementes/genética , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Sulfurtransferases/genética , Tiossulfatos/metabolismo
7.
Mol Plant ; 8(11): 1563-79, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26384576

RESUMO

Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.


Assuntos
Aminoácidos/metabolismo , Plantas/metabolismo
8.
Plant Physiol ; 165(1): 92-104, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24692429

RESUMO

The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/enzimologia , Metabolismo dos Carboidratos , Dioxigenases/metabolismo , Mitocôndrias/enzimologia , Sementes/embriologia , Arabidopsis/crescimento & desenvolvimento , DNA Bacteriano/genética , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Redes e Vias Metabólicas , Modelos Biológicos , Mutagênese Insercional/genética , Oxirredução , Fenótipo , Sementes/enzimologia , Especificidade por Substrato , Sulfetos/metabolismo , Sulfitos/metabolismo , Enxofre/metabolismo
9.
Plant Physiol ; 164(3): 1401-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424322

RESUMO

The posttranslational regulation of proteins by lysine (Lys) acetylation has recently emerged to occur not only on histones, but also on organellar proteins in plants and animals. In particular, the catalytic activities of metabolic enzymes have been shown to be regulated by Lys acetylation. The Arabidopsis (Arabidopsis thaliana) genome encodes two predicted sirtuin-type Lys deacetylases, of which only Silent Information Regulator2 homolog (SRT2) contains a predicted presequence for mitochondrial targeting. Here, we have investigated the function of SRT2 in Arabidopsis. We demonstrate that SRT2 functions as a Lys deacetylase in vitro and in vivo. We show that SRT2 resides predominantly at the inner mitochondrial membrane and interacts with a small number of protein complexes mainly involved in energy metabolism and metabolite transport. Several of these protein complexes, such as the ATP synthase and the ATP/ADP carriers, show an increase in Lys acetylation in srt2 loss-of-function mutants. The srt2 plants display no growth phenotype but rather a metabolic phenotype with altered levels in sugars, amino acids, and ADP contents. Furthermore, coupling of respiration to ATP synthesis is decreased in these lines, while the ADP uptake into mitochondria is significantly increased. Our results indicate that SRT2 is important in fine-tuning mitochondrial energy metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metabolismo Energético , Histona Desacetilases/metabolismo , Lisina/metabolismo , Mitocôndrias/metabolismo , Sirtuínas/metabolismo , Acetilação , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Isótopos de Carbono , Respiração Celular , Técnicas de Inativação de Genes , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , NAD/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fenótipo , Ligação Proteica , Transporte Proteico/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato
10.
Phytochemistry ; 95: 168-76, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916564

RESUMO

Glyoxylate is a peroxisomal intermediate of photorespiration, the recycling pathway for 2-phosphoglycolate (2-PG) produced by the oxygenase activity of Rubisco. Under hot and dry growth conditions, photorespiratory intermediates can accumulate and must be detoxified by alternative pathways, including plastidal reactions. Moreover, there is evidence that chloroplasts are capable of actively producing glyoxylate from glycolate. Further metabolic steps are unknown, but probably include a CO2 release step. Here, we report that CO2 production from glycolate and glyoxylate in isolated tobacco chloroplasts can be inhibited by pyruvate, but not related compounds. We isolated a protein fraction that was enriched for the chloroplast pyruvate dehydrogenase complex (PDC). The fraction contained a protein complex of several MDa in size that included all predicted subunits of the chloroplast PDC and a so far unidentified HSP93-V/ClpC1 heat shock protein. Glyoxylate competitively inhibited NADH formation from pyruvate in this fraction. The Km for pyruvate and the Ki for glyoxylate were 330 and 270 µM, respectively. Glyoxylate decarboxylation was also enriched in this fraction and could be in turn inhibited by pyruvate. Based on these data, we suggest that the chloroplast PDC might be part of a pathway for glycolate and/or glyoxylate oxidation in chloroplasts.


Assuntos
Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Glicolatos/metabolismo , Glioxilatos/metabolismo , Nicotiana/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo , Respiração Celular , Cloroplastos/enzimologia , Descarboxilação , Proteínas de Choque Térmico/metabolismo , Cinética , NAD/biossíntese , Fotossíntese , Ribulose-Bifosfato Carboxilase/metabolismo , Nicotiana/enzimologia
11.
Biosci Rep ; 33(4)2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23800285

RESUMO

Hydrogen sulfide is a physiologically relevant signalling molecule. However, circulating levels of this highly biologically active substance have to be maintained within tightly controlled limits in order to avoid toxic side effects. In patients suffering from EE (ethylmalonic encephalopathy), a block in sulfide oxidation at the level of the SDO (sulfur dioxygenase) ETHE1 leads to severe dysfunctions in microcirculation and cellular energy metabolism. We used an Ethe1-deficient mouse model to investigate the effect of increased sulfide and persulfide concentrations on liver, kidney, muscle and brain proteomes. Major disturbances in post-translational protein modifications indicate that the mitochondrial sulfide oxidation pathway could have a crucial function during sulfide signalling most probably via the regulation of cysteine S-modifications. Our results confirm the involvement of sulfide in redox regulation and cytoskeleton dynamics. In addition, they suggest that sulfide signalling specifically regulates mitochondrial catabolism of FAs (fatty acids) and BCAAs (branched-chain amino acids). These findings are particularly relevant in the context of EE since they may explain major symptoms of the disease.


Assuntos
Citoesqueleto de Actina/metabolismo , Dioxigenases/deficiência , Lipólise , Proteínas Mitocondriais/deficiência , Processamento de Proteína Pós-Traducional , Proteoma/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Encéfalo/metabolismo , Dioxigenases/genética , Ácidos Graxos/metabolismo , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/metabolismo , Rim/metabolismo , Fígado/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Anotação de Sequência Molecular , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Transdução de Sinais , Sulfetos/metabolismo
12.
Biochim Biophys Acta ; 1828(3): 1036-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23201540

RESUMO

Electric charges are important intrinsic properties of proteins. They directly affect functionality and also mediate interactions with other molecules such as cofactors, substrates and regulators of enzymatic activity, with lipids as well as other proteins. As such, analysis of the electric properties of proteins gives rise to improved understanding of the mechanism by which proteins fulfil their specific functions. This is not only true for singular proteins but also applies for defined assemblies of proteins, protein complexes and supercomplexes. Charges in proteins often are a consequence of the presence of basic and acidic amino acid residues within polypeptide chains. In liquid phase, charge distributions of proteins change in response to the pH of their environment. The interdependence of protein charge and the surrounding pH is best described by the isoelectric point, which is notoriously difficult to obtain for native protein complexes. Here, experimentally derived native isoelectric points (npIs) for a range mitochondrial and plastid protein complexes are provided. In addition, for four complexes, npIs were calculated by a novel approach which yields results largely matching the experimental npIs.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Membrana/química , Mitocôndrias/metabolismo , Animais , Biofísica/métodos , Bovinos , Proteínas Fúngicas/química , Concentração de Íons de Hidrogênio , Focalização Isoelétrica/métodos , Ponto Isoelétrico , Complexos de Proteínas Captadores de Luz/metabolismo , Espectrometria de Massas/métodos , Modelos Moleculares , Plastídeos/metabolismo , Água/química
13.
J Biol Chem ; 288(4): 2238-45, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23192340

RESUMO

Globulins are an important group of seed storage proteins in dicotyledonous plants. They are synthesized during seed development, assembled into very compact protein complexes, and finally stored in protein storage vacuoles (PSVs). Here, we report a proteomic investigation on the native composition and structure of cruciferin, the 12 S globulin of Brassica napus. PSVs were directly purified from mature seeds by differential centrifugations. Upon analyses by blue native (BN) PAGE, two major types of cruciferin complexes of ∼ 300-390 kDa and of ∼470 kDa are resolved. Analyses by two-dimensional BN/SDS-PAGE revealed that both types of complexes are composed of several copies of the cruciferin α and ß polypeptide chains, which are present in various isoforms. Protein analyses by two-dimensional isoelectric focusing (IEF)/SDS-PAGE not only revealed different α and ß isoforms but also several further versions of the two polypeptide chains that most likely differ with respect to posttranslational modifications. Overall, more than 30 distinct forms of cruciferin were identified by mass spectrometry. To obtain insights into the structure of the cruciferin holocomplex, a native PSV fraction was analyzed by single particle electron microscopy. More than 20,000 images were collected, classified, and used for the calculation of detailed projection maps of the complex. In contrast to previous reports on globulin structure in other plant species, the cruciferin complex of Brassica napus has an octameric barrel-like structure, which represents a very compact building block optimized for maximal storage of amino acids within minimal space.


Assuntos
Antígenos de Plantas/química , Brassica napus/metabolismo , Proteínas de Armazenamento de Sementes/química , Aminoácidos/química , Eletroforese em Gel de Poliacrilamida , Focalização Isoelétrica , Microscopia Eletrônica/métodos , Peptídeos/química , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/química , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Proteômica/métodos , Sementes/metabolismo , Vacúolos/metabolismo
14.
Plant Physiol ; 157(2): 587-98, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21841088

RESUMO

A classical approach, protein separation by two-dimensional blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was combined with tandem mass spectrometry and up-to-date computer technology to characterize the mitochondrial "protein complex proteome" of Arabidopsis (Arabidopsis thaliana) in so far unrivaled depth. We further developed the novel GelMap software package to annotate and evaluate two-dimensional blue native/sodium dodecyl sulfate gels. The software allows (1) annotation of proteins according to functional and structural correlations (e.g. subunits of a distinct protein complex), (2) assignment of comprehensive protein identification lists to individual gel spots, and thereby (3) selective display of protein complexes of low abundance. In total, 471 distinct proteins were identified by mass spectrometry, several of which form part of at least 35 different mitochondrial protein complexes. To our knowledge, numerous protein complexes were described for the first time (e.g. complexes including pentatricopeptide repeat proteins involved in nucleic acid metabolism). Discovery of further protein complexes within our data set is open to everybody via the public GelMap portal at www.gelmap.de/arabidopsis_mito.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/metabolismo , Proteoma/análise , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Ciclo do Ácido Cítrico , Citocromos c/análise , Citocromos c/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/análise , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/isolamento & purificação , ATPases Mitocondriais Próton-Translocadoras , Proteoma/metabolismo , Software , Succinato Desidrogenase/análise , Succinato Desidrogenase/metabolismo
15.
J Plant Physiol ; 167(18): 1598-605, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20724023

RESUMO

In plants, the iron storage protein ferritin can be targeted to both chloroplasts and mitochondria. To investigate the role of Arabidopsis ATFER4 ferritin in mitochondrial iron trafficking, atfer4-1 and atfer4-2 mutant knock-outs for the AtFer4 gene were grown in heterotrophic suspension cultures. Both mutants showed altered cell size and morphology, reduced viability, higher H2O2 content and reduced O2 consumption rates when compared to wt. Although no reduction in total ferritin or in mitochondrial ferritin was observed in atfer4 mutants, total iron content increased in atfer4 cells and in atfer4 mitochondria. Transcript correlation analysis highlighted a partial inverse relationship between the transcript levels of the mitochondrial ferric reductase oxidase FRO3, putatively involved in mitochondrial iron import/export, and AtFer4. Consistent with this, FRO3 transcript levels were higher in atfer4 cells. We propose that the complex molecular network maintaining Fe cellular homeostasis requires, in Arabidopsis heterotrophic cells, a proper balance of the different ferritin isoforms, and that alteration of this equilibrium, such as that occurring in atfer4 mutants, is responsible for an altered Fe homeostasis resulting in a change of intraorganellar Fe trafficking.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferritinas/metabolismo , Ferro/metabolismo , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Western Blotting , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Ferritinas/genética , Processos Heterotróficos , Homeostase/genética , Homeostase/fisiologia , Microscopia Eletrônica de Transmissão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
J Proteomics ; 73(10): 1974-85, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20621211

RESUMO

Legumes (Fabaceae) are unique in their ability to enter into an elaborate symbiosis with nitrogen-fixing rhizobial bacteria. Rhizobia-legume (RL) symbiosis represents one of the most productive nitrogen-fixing systems and effectively renders the host plants to be more or less independent of other nitrogen sources. Due to high protein content, legumes are among the most economically important crop families. Beyond that, legumes consist of over 16,000 species assigned to 650 genera. In most cases, the genomes of legumes are large and polyploid, which originally did not predestine these plants as genetic model systems. It was not until the early 1990 th that Medicago truncatula was selected as the model plant for studying Fabaceae biology. M. truncatula is closely related to many economically important legumes and therefore its investigation is of high relevance for agriculture. Recently, quite a number of studies were published focussing on in depth characterizations of the M. truncatula proteome. The present review aims to summarize these studies, especially those which focus on the root system and its dynamic changes induced upon symbiotic or pathogenic interactions with microbes.


Assuntos
Medicago truncatula/genética , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Medicago truncatula/microbiologia , Proteômica , Rhizobium/metabolismo , Simbiose/genética
17.
Physiol Plant ; 138(2): 176-90, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20053183

RESUMO

Two common bean (Phaseolus vulgaris L.) genotypes differing in aluminum (Al) resistance, Quimbaya (Al-resistant) and VAX-1 (Al-sensitive) were grown in hydroponics for up to 25 h with or without Al, and several parameters related to the exudation of organic acids anions from the root apex were investigated. Al treatment enhanced the exudation of citrate from the root tips of both genotypes. However, its dynamic offers the most consistent relationship between Al-induced inhibition of root elongation and Al accumulation in and exclusion from the root apices. Initially, in both genotypes the short-term (4 h) Al-injury period was characterized by the absence of citrate efflux independent of the citrate content of the root apices, and reduction of cytosolic turnover of citrate conferred by a reduced Nicotinamide adenine dinucleotide phosphate-isocitrate dehydrogenase (EC 1.1.1.42) activity. Transient recovery from initial Al stress (4-12 h) was found to be dependent mainly on the capacity to utilize internal citrate pools (Al-resistant genotype Quimbaya) or enhanced citrate synthesis [increased activities of NAD-malate dehydrogenase (EC 1.1.1.37) and ATP-phosphofructokinase (EC 2.7.1.11) in Al-sensitive VAX-1]. Sustained recovery from Al stress through citrate exudation in genotype Quimbaya after 24 h Al treatment relied on restoring the internal citrate pool and the constitutive high activity of citrate synthase (CS) (EC 4.1.3.7) fuelled by high phosphoenolpyruvate carboxylase (EC 4.1.1.31) activity. In the Al-sensitive genotype VAX-1 the citrate exudation and thus Al exclusion and root elongation could not be maintained coinciding with an exhaustion of the internal citrate pool and decreased CS activity.


Assuntos
Alumínio/farmacologia , Ácido Cítrico/metabolismo , Phaseolus/metabolismo , Raízes de Plantas/efeitos dos fármacos , Citrato (si)-Sintase/metabolismo , Isocitrato Desidrogenase/metabolismo , Malato Desidrogenase/metabolismo , Phaseolus/efeitos dos fármacos , Fosfoenolpiruvato Carboxilase/metabolismo , Fosfofrutoquinases/metabolismo , Raízes de Plantas/metabolismo
18.
Plant Physiol Biochem ; 47(9): 838-46, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19482482

RESUMO

A comparative proteome analysis was initiated to systematically investigate the physiological response of tomato (Solanum lycopersicum) to infection with Ralstonia solanacearum, causal agent of bacterial wilt. Plants of the susceptible tomato recombinant inbred line NHG3 and the resistant NHG13 were either infected or not infected with R. solanacearum and subsequently used for proteome analysis. Two-dimensional isoelectric focussing/sodium dodecyl-sulphate polyacrylamide gel electrophoresis (2-D IEF/SDS-PAGE) allowed the separation of about 650-690 protein spots per analysis. Twelve proteins were of differential abundance in susceptible plants in response to bacterial infection, while no differences were observed in the resistant genotype. LC-MS/MS analysis of these spots revealed 12 proteins, six of which were annotated as plant and six as bacterial proteins. Among the plant proteins, two represent pathogenesis related (PR) proteins, one stress response protein, one enzyme of carbohydrate and energy metabolism, and one hypothetical protein. A constitutive difference between resistant and susceptible lines was not found.


Assuntos
Proteínas de Plantas/química , Ralstonia solanacearum/metabolismo , Solanum lycopersicum/microbiologia , Sequência de Aminoácidos , Ditiotreitol/farmacologia , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genótipo , Focalização Isoelétrica , Espectrometria de Massas , Dados de Sequência Molecular , Peptídeos/química , Proteínas de Plantas/metabolismo , Proteômica/métodos , Ralstonia solanacearum/genética , Homologia de Sequência de Aminoácidos
19.
Biochim Biophys Acta ; 1787(1): 60-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19059196

RESUMO

The individual protein complexes of the oxidative phosphorylation system (OXPHOS complexes I to V) specifically interact and form defined supramolecular structures, the so-called "respiratory supercomplexes". Some supercomplexes appear to associate into larger structures, or megacomplexes, such as a string of dimeric ATP synthase (complex V(2)). A row-like organization of OXPHOS complexes I, III and IV into respiratory strings has also been proposed. These transient strings cannot be purified after detergent solubilization. Hence the shape and composition of the respiratory string was approached by an extensive structural characterization of all its possible building blocks, which are the supercomplexes. About 400,000 molecular projections of supercomplexes from potato mitochondria were processed by single particle electron microscopy. We obtained two-dimensional projection maps of at least five different supercomplexes, including the supercomplex I+III(2), III(2)+IV(1), V(2), I+III(2)+IV(1) and I(2)+III(2) in different types of position. From these maps the relative position of the individual complexes in the largest unit, the I(2)+III(2)+IV(2) supercomplex, could be determined in a coherent way. The maps also show that the I+III(2)+IV(1) supercomplex, or respirasome, differs from its counterpart in bovine mitochondria. The new structural features allow us to propose a consistent model of the respiratory string, composed of repeating I(2)+III(2)+IV(2) units, which is in agreement with dimensions observed in former freeze-fracture electron microscopy data.


Assuntos
Complexos Multienzimáticos/química , Proteínas de Plantas/química , Solanum tuberosum/metabolismo , Dimerização , Complexo I de Transporte de Elétrons/química , Complexo III da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/química , Microscopia Eletrônica , Modelos Moleculares , Fosforilação Oxidativa , Conformação Proteica , ATPases Translocadoras de Prótons/química
20.
Plant J ; 33(5): 899-909, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12609031

RESUMO

Genetic dissection of the lipid bilayer composition provides essential in vivo evidence for the role of individual lipid species in membrane function. To understand the in vivo role of the anionic phospholipid, phosphatidylglycerol, the loss-of-function mutation was identified and characterized in the Arabidopsis thaliana gene coding for phosphatidylglycerophosphate synthase 1, PGP1. This mutation resulted in pigment-deficient plants of the xantha type in which the biogenesis of thylakoid membranes was severely compromised. The PGP1 gene coded for a precursor polypeptide that was targeted in vivo to both plastids and mitochondria. The activity of the plastidial PGP1 isoform was essential for the biosynthesis of phosphatidylglycerol in chloroplasts, whereas the mitochondrial PGP1 isoform was redundant for the accumulation of phosphatidylglycerol and its derivative cardiolipin in plant mitochondrial membranes. Together with findings in cyanobacteria, these data demonstrated that anionic phospholipids play an important, evolutionarily conserved role in the biogenesis and function of the photosynthetic machinery. In addition, mutant analysis suggested that in higher plants, mitochondria, unlike plastids, could import phosphatidylglycerol from the endoplasmic reticulum.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cloroplastos/genética , Expressão Gênica , Isoenzimas/genética , Isoenzimas/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mutação , Fosfatidilgliceróis/metabolismo , Folhas de Planta/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA