Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103125, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38574432

RESUMO

Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.


Assuntos
Sulfeto de Hidrogênio , Ativação de Macrófagos , Macrófagos , Estresse Oxidativo , Estresse Oxidativo/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Animais , Camundongos , Humanos , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Lipopolissacarídeos , Inflamação/metabolismo , Cistationina gama-Liase/metabolismo , Sulfetos/farmacologia , Interferon gama/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Proteômica/métodos
2.
Commun Biol ; 6(1): 385, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031316

RESUMO

Protein quality control is a process in which a protein's folding status is constantly monitored. Mislocalized proteins (MLP), are processed by the various quality control pathways, as they are often misfolded due to inappropriate cellular surroundings. Polypeptides that fail to translocate into the ER due to an inefficient signal peptide, mutations or ER stress are recognized by the pre-emptive ER associated quality control (pEQC) pathway and degraded by the 26 S proteasome. In this report we reveal the role of RNF149, a membrane bound E3 ligase in the ubiquitination of known pEQC substrates. We demonstrate its selective binding only to non-translocated proteins and its association with known pEQC components. Impairment in RNF149 function increases translocation flux into the ER and manifests in a myeloproliferative neoplasm (MPN) phenotype, a pathological condition associated with pEQC impairment. Finally, the dynamic localization of RNF149 may provide a molecular switch to regulate pEQC during ER stress.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitinação , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Antioxid Redox Signal ; 38(4-6): 388-402, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35979894

RESUMO

Aims: Oxidative modifications of cysteine (Cys) thiols regulate various physiological processes, including inflammatory responses. The thioredoxin (Trx) system plays a key role in thiol redox control. The aim of this study was to characterize the dynamic cysteine proteome of human macrophages upon activation by the prototypical proinflammatory agent, bacterial lipopolysaccharide (LPS), and/or perturbation of the Trx system. Results: In this study, we profiled the cellular and redox proteome of human THP-1-derived macrophages during the early phase of LPS activation and/or inhibition of Trx system activity by auranofin (AF) by employing a peptide-centric, resin-assisted capture, redox proteomic workflow. Among 4200 identified cysteines, oxidation of nearly 10% was selectively affected by LPS or AF treatments. Notably, the proteomic analysis uncovered a subset of ∼100 thiols, mapped to proteins involved in diverse processes, whose oxidation is antagonistically regulated by LPS and Trx. Compared with the redox proteome, the cellular proteome was largely unchanged, highlighting the importance of redox modification as a mechanism that allows for rapid modulation of macrophage activities in response to a proinflammatory or pro-oxidant insult. Structural-functional analyses provided mechanistic insights into redox regulation of selected proteins, including the glutathione-synthesizing enzyme, glutamate-cysteine ligase, and the autophagy adaptor, SQSTM1/p62, suggesting mechanisms by which macrophages adapt and fine-tune their responses according to a changing inflammatory and redox environment. Innovation: This study provides a rich resource for further characterization of redox mechanisms that regulate macrophage inflammatory activities. Conclusion: The dynamic thiol redox proteome allows macrophages to efficiently respond and adapt to redox and inflammatory challenges. Antioxid. Redox Signal. 38, 388-402.


Assuntos
Cisteína , Compostos de Sulfidrila , Humanos , Compostos de Sulfidrila/metabolismo , Cisteína/metabolismo , Proteoma/metabolismo , Proteômica , Lipopolissacarídeos/farmacologia , Tiorredoxinas/metabolismo , Oxirredução , Macrófagos/metabolismo
4.
J Biol Chem ; 295(11): 3590-3600, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32041780

RESUMO

Hydrogen sulfide has been implicated in a large number of physiological processes including cell survival and death, encouraging research into its mechanisms of action and therapeutic potential. Results from recent studies suggest that the cellular effects of hydrogen sulfide are mediated in part by sulfane sulfur species, including persulfides and polysulfides. In the present study, we investigated the apoptosis-modulating effects of polysulfides, especially on the caspase cascade, which mediates the intrinsic apoptotic pathway. Biochemical analyses revealed that organic or synthetic polysulfides strongly and rapidly inhibit the enzymatic activity of caspase-3, a major effector protease in apoptosis. We attributed the caspase-3 inhibition to persulfidation of its catalytic cysteine. In apoptotically stimulated HeLa cells, short-term exposure to polysulfides triggered the persulfidation and deactivation of cleaved caspase-3. These effects were antagonized by the thioredoxin/thioredoxin reductase system (Trx/TrxR). Trx/TrxR restored the activity of polysulfide-inactivated caspase-3 in vitro, and TrxR inhibition potentiated polysulfide-mediated suppression of caspase-3 activity in situ We further found that under conditions of low TrxR activity, early cell exposure to polysulfides leads to enhanced persulfidation of initiator caspase-9 and decreases apoptosis. Notably, we show that the proenzymes procaspase-3 and -9 are basally persulfidated in resting (unstimulated) cells and become depersulfidated during their processing and activation. Inhibition of TrxR attenuated the depersulfidation and activation of caspase-9. Taken together, our results reveal that polysulfides target the caspase-9/3 cascade and thereby suppress cancer cell apoptosis, and highlight the role of Trx/TrxR-mediated depersulfidation in enabling caspase activation.


Assuntos
Apoptose/efeitos dos fármacos , Caspases/metabolismo , Sulfetos/metabolismo , Sulfetos/farmacologia , Tiorredoxinas/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Inibidores de Caspase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células HeLa , Humanos , Transdução de Sinais/efeitos dos fármacos , Tiorredoxina Dissulfeto Redutase/metabolismo
5.
Mol Biol Cell ; 26(21): 3719-27, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26337389

RESUMO

The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97-AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97's role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin.


Assuntos
Proteínas de Transporte/metabolismo , Degradação Associada com o Retículo Endoplasmático/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , beta Carioferinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Sinais Direcionadores de Proteínas , Ubiquitina/metabolismo , Ubiquitinação
6.
J Biol Chem ; 289(30): 20706-16, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24898249

RESUMO

Initial steps in protein synthesis are highly regulated processes as they define the reading frame of the translation machinery. Eukaryotic translation initiation is a process facilitated by numerous factors (eIFs), aimed to form a "scanning" mechanism toward the initiation codon. Translation initiation of the main open reading frame (ORF) in an mRNA transcript has been reported to be regulated by upstream open reading frames (uORFs) in a manner of re-initiation. This mode of regulation is governed by the phosphorylation status of eIF2α and controlled by cellular stresses. Another mode of translational initiation regulation is leaky scanning, and this regulatory process has not been extensively studied. We have identified arsenite- inducible regulatory particle-associated protein (AIRAP) transcript to be translationally induced during arsenite stress conditions. AIRAP transcript contains a single uORF in a poor-kozak context. AIRAP translation induction is governed by means of leaky scanning and not re-initiation. This induction of AIRAP is solely dependent on eIF1 and the uORF kozak context. We show that eIF1 is phosphorylated under specific conditions that induce protein misfolding and have biochemically characterized this site of phosphorylation. Our data indicate that leaky scanning like re-initiation is responsive to stress conditions and that leaky scanning can induce ORF translation by bypassing poor kozak context of a single uORF transcript.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Iniciação Traducional da Cadeia Peptídica/fisiologia , Proteínas de Ligação a RNA/biossíntese , Estresse Fisiológico/fisiologia , Animais , Linhagem Celular , Fator de Iniciação 2 em Eucariotos/genética , Fatores de Iniciação em Eucariotos/genética , Humanos , Camundongos , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Fosforilação/fisiologia , Proteínas de Ligação a RNA/genética
7.
Biochem J ; 457(2): 253-61, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24160817

RESUMO

Protein homoeostasis is a fundamental requirement for all living cells in order to survive in a dynamic surrounding. Proper levels of AIRAPL (arsenite-inducible RNA-associated protein-like protein) (ZFAND2B) are required in order to maintain cellular folding capacity in metazoans, and functional impairment of AIRAPL results in acceleration of aging and protein aggregation. However, the cellular roles of AIRAPL in this process are not known. In the present paper, we report that AIRAPL binds and forms a complex with p97 [VCP (valosin-containing protein)/Cdc48], Ubxd8 (ubiquitin regulatory X domain 8), Npl4-Ufd1, Derlin-1 and Bag6 on the ER (endoplasmic reticulum) membrane. In spite of the fact that AIRAPL complex partners are involved in the ERAD (ER-associated degradation) process, AIRAPL knockdown does not show any impairment in ERAD substrate degradation. However, translocation into the ER of a subset of ERAD- and non-ERAD-secreted proteins are regulated by AIRAPL. The ability to regulate translocation by the p97-AIRAPL complex is entirely dependent on the proteins' signal peptide. Our results demonstrate a p97 complex regulating translocation into the ER in a signal-peptide-dependent manner.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Retículo Endoplasmático/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Ligação a RNA/metabolismo , Dedos de Zinco/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Humanos , Camundongos , Ligação Proteica/fisiologia , Transporte Proteico/fisiologia , Proteínas de Ligação a RNA/genética , Proteína com Valosina
8.
Proc Natl Acad Sci U S A ; 104(12): 4870-5, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17360335

RESUMO

The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. It affects the activity of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets inhibitors of anaphase initiation for degradation. The mechanisms by which this system regulates APC/C remain obscure. Some models propose that the system promotes sequestration of the APC/C activator Cdc20 by binding to the checkpoint proteins Mad2 and BubR1. A different model suggests that a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Cdc20, and Mad2 inhibits APC/C in mitotic checkpoint [Sudakin V, Chan GKT, Yen TJ (2001) J Cell Biol 154:925-936]. We examined this problem by using extracts from nocodazole-arrested cells that reproduce some downstream events of the mitotic checkpoint system, such as lag kinetics of the degradation of APC/C substrate. Incubation of extracts with adenosine-5'-(gamma-thio)triphosphate (ATP[gammaS]) stabilized the checkpoint-arrested state, apparently by stable thiophosphorylation of some proteins. By immunoprecipitation of APC/C from stably checkpoint-arrested extracts, followed by elution with increased salt concentration, we isolated inhibitory factors associated with APC/C. A part of the inhibitory material consists of Cdc20 associated with BubR1 and Mad2, and is thus similar to MCC. Contrary to the original MCC hypothesis, we find that MCC disassembles upon exit from the mitotic checkpoint. Thus, the requirement of the mitotic checkpoint system for the binding of Mad2 and BubR1 to Cdc20 may be for the assembly of the inhibitory complex rather than for Cdc20 sequestration.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose , Complexos Ubiquitina-Proteína Ligase/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Ciclossomo-Complexo Promotor de Anáfase , Extratos Celulares , Células HeLa , Humanos , Cinética , Mitose/efeitos dos fármacos , Nocodazol/farmacologia , Fosforilação/efeitos dos fármacos , Cloreto de Sódio/farmacologia
9.
J Biol Chem ; 279(49): 50976-85, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15371422

RESUMO

Inactivation of p53 and activation of telomerase occur in the majority of human cancers, raising the possibility of a link between these two pathways. Overexpression of wild-type p53 down-regulates the enzymatic activity of telomerase in various cancer cell lines through transcriptional repression of its catalytic subunit, human telomerase reverse transcriptase (hTERT). In this study, we re-evaluated the role of p53 in telomerase regulation using isogenic cell lines expressing physiological levels of p53. We demonstrate that endogenous wild-type p53 was able to down-regulate telomerase activity, hTERT mRNA levels, and promoter activity; however, the ability to repress hTERT expression was found to be cell type-specific. The integrity of the DNA-binding core domain, the N-terminal transactivation domain, and the C-terminal oligomerization domains of p53 was essential for hTERT promoter repression, whereas the proline-rich domain and the extreme C terminus were not required. Southwestern and chromatin immunoprecipitation experiments demonstrated lack of p53 binding to the hTERT promoter, raising the possibility of an indirect repressive mechanism. The down-regulation of hTERT promoter activity was abolished by a dominant-negative E2F1 mutant. Mutational analysis identified a specific E2F site responsible for p53-mediated repression. Knockdown of the key p53 transcriptional target, p21, was sufficient to eliminate the p53-dependent repression of hTERT. Inactivation of the Rb family using either viral oncoproteins or RNA interference attenuated the repression. Inhibition of histone deacetylases also interfered with the repression of hTERT by p53. Therefore, our results suggest that repression of hTERT by endogenous p53 is mediated by p21 and E2F.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo , Telomerase/biossíntese , Proteína Supressora de Tumor p53/fisiologia , Sequência de Bases , Southern Blotting , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21 , DNA/química , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição E2F , Fator de Transcrição E2F1 , Genes Reporter , Histona Desacetilases/metabolismo , Humanos , Luciferases/metabolismo , Dados de Sequência Molecular , Mutação , Neoplasias/metabolismo , Plasmídeos/metabolismo , Mutação Puntual , Prolina/química , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/metabolismo , Proteína do Retinoblastoma/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional , Transfecção , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA