Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Blood ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991192

RESUMO

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

2.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208489

RESUMO

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Epigênese Genética , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Linhagem , Fenótipo
3.
Pituitary ; 20(6): 676-682, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28828544

RESUMO

PURPOSE: Internal carotid artery (ICA) aneurysms have rarely been found in association with marked hyperprolactinemia in the absence of prolactinoma; the cause of hyperprolactinemia has never been investigated. We aimed to determine if the observed hyperprolactinemia is due to a vascular-derived or known prolactin secretagogue from the injured ICA, analogous to pregnancy-associated hyperprolactinemia putatively due to placental factors. METHODS: We conducted a case series and literature review of individuals with severe hyperprolactinemia in association with ICA aneurysms. In two affected patients at our institutions, we performed RT-PCR and ELISA of prolactin secretagogues that are produced by vascular tissue and/or upregulated in pregnancy: AGT (encoding angiotensinogen), TAC1 (encoding substance P), HDC (encoding the enzyme responsible for conversion of histidine to histamine), and prolactin-releasing hormone (PRLH). Patient blood samples were compared to pregnancy blood samples (positive controls) and middle-aged male blood samples (negative controls). RESULTS: Two men presented with serum prolactin >100-fold normal associated with cavernous ICA aneurysms and no pituitary adenoma. Aneurysm stenting in one man more than halved his serum prolactin. In both men, dopamine agonist therapy markedly reduced serum prolactin. RT-PCR and ELISA showed no differences between patients and controls in AGT, TAC1 or HDC expression or PRLH titre, respectively. Literature review revealed 11 similar cases. CONCLUSIONS: We propose the term 'vasculogenic hyperprolactinemia' to encompass the hyperprolactinemia associated with ICA aneurysms. This may be mediated by an endothelial factor capable of paracrine stimulation of lactotrophs; however, angiotensin II, substance P, histamine and PRLH appear unlikely to be causative.


Assuntos
Hiperprolactinemia/sangue , Prolactina/sangue , Adulto , Doenças das Artérias Carótidas/sangue , Doenças das Artérias Carótidas/metabolismo , Artéria Carótida Interna/patologia , Humanos , Masculino
5.
Nat Genet ; 43(10): 1012-7, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892162

RESUMO

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Assuntos
Fator de Transcrição GATA2/genética , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Característica Quantitativa Herdável , Sequência de Aminoácidos , Animais , Células COS , Diferenciação Celular , Proliferação de Células , Chlorocebus aethiops , Mapeamento Cromossômico , DNA Complementar , Feminino , Fator de Transcrição GATA2/metabolismo , Predisposição Genética para Doença , Células HEK293 , Haplótipos , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Plasmídeos , Polimorfismo de Nucleotídeo Único
6.
BMC Genomics ; 12: 176, 2011 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-21466694

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. RESULTS: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. CONCLUSIONS: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.


Assuntos
Encéfalo/metabolismo , MicroRNAs/genética , Animais , Encéfalo/crescimento & desenvolvimento , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , MicroRNAs/metabolismo
7.
Blood ; 116(19): 4016-24, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20664062

RESUMO

Cellular senescence is a mechanism to inhibit the growth of mammalian cells after oncogenic activation, or in response to damage or stress. We describe here the identification of a novel gene, SENEX, that regulates stress induced premature senescence pathways in endothelial cells (ECs) involving p16(INK4a) and retinoblastoma protein activation. Endogenous levels of SENEX remain unchanged during replicative senescence but are regulated by H(2)O(2)-mediated stress. In contrast to that previously described for senescence in other cell types, the SENEX induced senescent ECs are profoundly anti-inflammatory. The cells are resistant to tumor necrosis factor (TNF)α-induced apoptosis, adhesion of neutrophils and mononuclear cells, and the surface (but not cytoplasmic) expression of endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. Furthermore they are resistant to thrombin induced vascular leak. Senescent ECs such as those lining atherosclerotic lesions may therefore function to limit the inflammatory response. SENEX is also essential for EC survival since depletion either ectopically by siRNA or by high- dose H(2)O(2) treatment causes apoptosis. Together, these findings expand our understanding of the role of senescence in the vasculature and identify SENEX as a fulcrum for driving the resultant phenotype of the endothelium after activation.


Assuntos
Senescência Celular/genética , Células Endoteliais/citologia , Estresse Oxidativo/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Adesão Celular , Sobrevivência Celular/genética , Células Cultivadas , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Neovascularização Fisiológica/genética , Fenótipo , RNA Interferente Pequeno/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA